
Concurrency
CSE 332 – Section 9

Slides by James Richie Sulaeman

Concurrency Errors

A race condition occurs when the result of your program depends on how threads are
scheduled/interleaved

Concurrency Errors

x = read(count) write(count, x+1)Thread 1

y = read(count) write(count, y+1)Thread 2

● A data race occurs when two threads access the same variable at the same time
○ Write-write: two threads writing to the same variable at the same time
○ Write-read: one thread writing to a variable while another reads from it
○ Note: read-reads do not cause a data race since they do not modify variables

● A bad interleaving occurs when the interleaving of threads result in bad and
unexpected intermediate states
○ e.g. two threads are trying to increment the variable count at the same time

A deadlock occurs when a cycle of threads are waiting on each other

A piece of code is considered to have a concurrency error if there exists any execution
sequence that can lead to a race condition or deadlock
● It is not necessary for the code to always execute in this bad sequence
● The possibility of such a sequence occurring is sufficient

Concurrency Errors

Thread 1 Thread 2

Resource A

Resource B

waiting for

waiting for

assigned to

assigned to

● Thread 1 is waiting on a resource held by Thread 2
● Thread 2 is waiting on a resource held by Thread 1

Problem 1

 1 class UserProfile {
 2 static int id_counter;
 3 int id; // unique for each account
 4 int[] friends = new int[9999]; // horrible style
 5 int numFriends;
 6 Image[] embarrassingPhotos = new Image[9999];
 7
 8 UserProfile() { // constructor for new profiles
 9 id = id_counter++;
10 numFriends = 0;
11 }
12
13 synchronized void makeFriends(UserProfile newFriend) {
14 synchronized(newFriend) {
15 if (numFriends == friends.length
16 || newFriend.numFriends == newFriend.friends.length) {
17 throw new TooManyFriendsException();
18 }
19 friends[numFriends++] = newFriend.id;
20 newFriend.friends[newFriend.numFriends++] = id;
21 }
22 }
23
24 synchronized void removeFriend(UserProfile frenemy) {
25 ...
26 }
27 }

The constructor has a concurrency error. What
is it and how would you fix it?

Problem 1a

● There is a data race on id_counter
● Two accounts could get the same id if they

are created at the same time by different
threads

● To fix this, you could synchronize on a lock
for id_counter

Note: the synchronized keyword on a method locks
this object. elsewhere, it locks the specified object

 1 class UserProfile {
 2 static int id_counter;
 3 int id; // unique for each account
 4 int[] friends = new int[9999]; // horrible style
 5 int numFriends;
 6 Image[] embarrassingPhotos = new Image[9999];
 7
 8 UserProfile() { // constructor for new profiles
 9 id = id_counter++;
10 numFriends = 0;
11 }
12
13 synchronized void makeFriends(UserProfile newFriend) {
14 synchronized(newFriend) {
15 if (numFriends == friends.length
16 || newFriend.numFriends == newFriend.friends.length) {
17 throw new TooManyFriendsException();
18 }
19 friends[numFriends++] = newFriend.id;
20 newFriend.friends[newFriend.numFriends++] = id;
21 }
22 }
23
24 synchronized void removeFriend(UserProfile frenemy) {
25 ...
26 }
27 }

The makeFriends method has a concurrency
error. What is it and how would you fix it?

Problem 1b

● There is a potential deadlock
● Suppose there are two UserProfile

objects called obj1 and obj2
○ One thread calls

obj1.makeFriends(obj2)
○ Another thread calls

obj2.makeFriends(obj1)
○ Both threads execute line 13 at the

same time and deadlock at line 14
● To fix this, acquire locks in a consistent order

(e.g. in order of id fields)
Note: the synchronized keyword on a method locks
this object. elsewhere, it locks the specified object

Problem 2

 1 public class BubbleTea {
 2 private Stack<String> drink = new Stack<String>();
 3 private Stack<String> toppings = new Stack<String>();
 4 private final int maxDrinkAmount = 8;
 5
 6 // Checks if drink has capacity
 7 public boolean hasCapacity() {
 8 return drink.size() < maxDrinkAmount;
 9 }
10
11 // Adds liquid to drink
12 public void addLiquid(String liquid) {
13 if (hasCapacity()) {
14 if (liquid.equals("Milk")) {
15 while (hasCapacity()) {
16 drink.push("Milk");
17 }
18 } else {
19 drink.push(liquid);
20 }
21 }
22 }
23
24 // Adds newTop to list of toppings to add to drink
25 public void addTopping(String newTop) {
26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
27 toppings.push("Bubbles");
28 } else {
29 toppings.push(newTop);
30 }
31 }
32 }

Does the BubbleTea class have:

a race condition potential for deadlock

a data race none of these

a race condition

● There is the potential for bad interleaving
● Suppose two threads call addLiquid() at

the same time
○ Both threads satisfy the

hasCapacity() condition with a value
of 7 for drink.size()

○ Both threads then push onto the drink
stack, exceeding maxDrinkAmount

Note: a “thread-safe” stack prevents data races on
itself since only one thread can modify it at a time

Problem 2a

 1 public class BubbleTea {
 2 private Stack<String> drink = new Stack<String>();
 3 private Stack<String> toppings = new Stack<String>();
 4 private final int maxDrinkAmount = 8;
 5
 6 // Checks if drink has capacity
 7 public boolean hasCapacity() {
 8 return drink.size() < maxDrinkAmount;
 9 }
10
11 // Adds liquid to drink
12 public void addLiquid(String liquid) {
13 if (hasCapacity()) {
14 if (liquid.equals("Milk")) {
15 while (hasCapacity()) {
16 drink.push("Milk");
17 }
18 } else {
19 drink.push(liquid);
20 }
21 }
22 }
23
24 // Adds newTop to list of toppings to add to drink
25 public synchronized void addTopping(String newTop) {
26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
27 toppings.push("Bubbles");
28 } else {
29 toppings.push(newTop);
30 }
31 }
32 }

Suppose we made the addTopping method
synchronized. Does this modified BubbleTea
class have:

Problem 2b

a race condition potential for deadlock

a data race none of these

a race condition

● This does not fix the problem
● Modifying addTopping() still allows for the

same pattern of execution in addLiquid()
as described earlier

● However, this change reduces the effective
concurrency in the code, so it makes things
slightly worse Note: a “thread-safe” stack prevents data races on

itself since only one thread can modify it at a time

Problem 3

 1 public class PhoneMonitor {
 2 private int numMinutes = 0;
 3 private int numAccesses = 0;
 4 private int maxMinutes = 200;
 5 private int maxAccesses = 10;
 6 private boolean phoneOn = true;
 7 private Object accessesLock = new Object();
 8 private Object minutesLock = new Object();
 9
10 public void accessPhone(int minutes) {
11 if (phoneOn) {
12 synchronized (accessesLock) {
13 synchronized (minutesLock) {
14 numAccesses++;
15 numMinutes += minutes;
16 checkLimits();
17 }
18 }
19 }
20 }
21
22 private void checkLimits() {
23 synchronized (minutesLock) {
24 synchronized (accessesLock) {
25 if (numAccesses >= maxAccesses
26 || numMinutes >= maxMinutes) {
27 phoneOn = false;
28 }
29 }
30 }
31 }
32 }

Does the PhoneMonitor class have:

a race condition potential for deadlock

a data race none of these

a race condition

● There is a data race on phoneOn. By definition,
this is also a race condition

● Thread 1 could be at line 11 reading phoneOn,
while Thread 2 is at line 27 writing phoneOn
○ This is a write-read data race

Note: the synchronized keyword is reentrant. The
thread holds the lock, not the function call.

Problem 3a

a data race

 1 public class PhoneMonitor {
 2 private int numMinutes = 0;
 3 private int numAccesses = 0;
 4 private int maxMinutes = 200;
 5 private int maxAccesses = 10;
 6 private boolean phoneOn = true;
 7 private Object accessesLock = new Object();
 8 private Object minutesLock = new Object();
 9
10 public void accessPhone(int minutes) {
11 if (phoneOn) {
12 synchronized (accessesLock) {
13 synchronized (minutesLock) {
14 numAccesses++;
15 numMinutes += minutes;
16 checkLimits();
17 }
18 }
19 }
20 }
21
22 private void checkLimits() {
23 synchronized (minutesLock) {
24 synchronized (accessesLock) {
25 if (numAccesses >= maxAccesses
26 || numMinutes >= maxMinutes) {
27 phoneOn = false;
28 }
29 }
30 }
31 }
32 }

Note: the synchronized keyword is reentrant. The
thread holds the lock, not the function call.

Problem 3b

Suppose we made the checkLimits method public.
Does this modified PhoneMonitor class have:

a race condition potential for deadlock

a data race none of these

a race condition

● Same data race on phoneOn still exists
● However, there is now also the potential for deadlock
● Suppose two threads call accessPhone() and

checkLimits() at the same time
○ Thread 1 calls accessPhone() and acquires

accessesLock
○ Thread 2 calls checkLimits() and acquires

minutesLock
○ Now Thread 1 wants to acquire minutesLock,

while Thread 2 wants to acquire accessesLock

a data race

potential for deadlock

Thank You!

