Concurrency
CSE 332 — Section 9

Slides by James Richie Sulaeman

Concurrenc

Concurrency Errors

A race condition occurs when the result of your program depends on how threads are
scheduled/interleaved
e A data race occurs when two threads access the same variable at the same time
o Write-write: two threads writing to the same variable at the same time
o Write-read: one thread writing to a variable while another reads from it
o Note: read-reads do not cause a data race since they do not modify variables
e A bad interleaving occurs when the interleaving of threads result in bad and
unexpected intermediate states
o e.g. two threads are trying to increment the variable count at the same time

Thread 1 x = read (count) > write (count, x+1)

Thread 2 » y = read(count) > write(count, y+1)

Concurrency Errors

A deadlock occurs when a cycle of threads are waiting on each other
e Thread 1 is waiting on a resource held by Thread 2
e Thread 2 is waiting on a resource held by Thread 1

joned to Waitin
%—[Resource A]4\‘(’710(”

Thread 1 Thread 2

.. R B R
m’[esource]—m‘

A piece of code is considered to have a concurrency error if there exists any execution
sequence that can lead to a race condition or deadlock

e It is not necessary for the code to always execute in this bad sequence

e The possibility of such a sequence occurring is sufficient

Problem 1a

The constructor has a concurrency error. What
is it and how would you fix it?
e Thereisadatarace on id counter
e [wo accounts could get the same id if they
are created at the same time by different
threads
e o fix this, you could synchronize on a lock
for id counter

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

class UserProfile {

static int id_counter;

int id; // unique for each account

int[] friends = new int[9999]; // horrible style
int numFriends;

Image|] embarrassingPhotos = new Image[9999];

UserProfile() { // constructor for new profiles
id = id_counter++;
numFriends = 0;

}

synchronized void makeFriends (UserProfile newFriend) {
synchronized (newFriend) {
if (numFriends == friends.length
| | newFriend.numFriends == newFriend.friends.length) {
throw new TooManyFriendsException () ;
}
friends numFriends++] = newFriend.id;
newFriend.friends [newFriend.numFriends++] = id;

}

synchronized void removeFriend(UserProfile frenemy) {

}

Note: the synchronized keyword on a method locks
this object. elsewhere, it locks the specified object

Problem 1b

1
2 static int id_counter;
3 int id; // unique for each account
4 int[] friends = new int[9999]; // horrible style
5 int numFriends;
. 6 Image|] embarrassingPhotos = new Image[9999];
The makeFriends method has a concurrency 7
. . . . 8 UserProfile() { // constructor for new profiles
error. What is it and how would you fix it? 5 id = id counter++;
. . 10 numFriends = 0;
e There is a potential deadlock 1}
12
[] Suppose there are tWO UserPrOfile 13 synchronized void makeFriends (UserProfile newFriend) {
. . . 14 synchronized (newFriend) {
ObJeCtS Ca”ed Obj 1 and Obj 2 15 if (numFriends == friends.length
16 | | newFriend.numFriends == newFriend.friends.length) {
O One th read Ca”S 17 throw new TooManyFriendsException () ;
18 }
Obj 1 . ma keFrlendS (Obj 2) 19 friends numFriends++] = newFriend.id;
20 newFriend.friends [newFriend.numFriends++] = id;
o Another thread calls 21)
))) 22 }
obj2.makeFriends (objl) 23
. 24 synchronized void removeFriend(UserProfile frenemy) {
o Both threads execute line 13 at the 25
. . 26 }
same time and deadlock at line 14 27 }

e o fix this, acquire locks in a consistent order

(e.g. in order of id fields)
Note: the synchronized keyword on a method locks

this object. elsewhere, it locks the specified object

Problem 2a

Does the BubbleTea class have:

a race condition potential for deadlock

a data race none of these

e There is the potential for bad interleaving
e Suppose two threads call addLiquid () at
the same time
o Both threads satisfy the
hasCapacity () condition with a value
of 7 fordrink.size ()
o Both threads then push onto the drink
stack, exceeding maxDrinkAmount

1 public class BubbleTea {
2 private Stack<String> drink = new Stack<String>();
3 private Stack<String> toppings = new Stack<String>();
4 private final int maxDrinkAmount = 8;
5
6 // Checks if drink has capacity
7 public boolean hasCapacity() {
8 return drink.size () < maxDrinkAmount;
9 }
10
11 // Adds liquid to drink
12 public void addLiquid(String liquid) {
13 if (hasCapacity()) {
14 if (liquid.equals("Milk")) {
15 while (hasCapacity()) {
16 drink.push("Milk") ;
17 }
18 } else {
19 drink.push (liquid) ;
20 }
21 }
22 }
23
24 // Adds newTop to list of toppings to add to drink
25 public void addTopping(String newTop) {
26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
27 toppings.push ("Bubbles") ;
28 } else {
29 toppings.push (newTop) ;
30 }
31 }
32}

Note: a “thread-safe” stack prevents data races on
itself since only one thread can modify it at a time

1 public class BubbleTea {
2 private Stack<String> drink = new Stack<String>();
Pro blem 2b 3 private Stack<String> toppings = new Stack<String>();
4 private final int maxDrinkAmount = 8;
5
6 // Checks if drink has capacity
7 public boolean hasCapacity() {
8 return drink.size () < maxDrinkAmount;
. 5)
Suppose we made the addTopping method 10
g 0 P 11 // Adds liquid to drink
synchronized. Does this modified BubbleTea 12 public void addLiquid(String liquid) {
13 if (hasCapacity()) {
class have: 14 if (liquid.equals("Milk")) {
15 while (hasCapacity()) {
. . 16 drink.push("Milk") ;
a race condition potential for deadlock 17)
18 } else {
a data race none of these o , e andy
21 }
. \ 22 }
e This does not fix the problem 23
. . . 24 // Adds newTop to list of toppings to add to drink
e Modifying addTopping () stil allows for the 25 public synchronized void addTopping(String newTop) {
. . . . 26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
same pattern of execution in addLiquid () 27 toppings .push ("Bubbles") ;
. . 28 } else {
aS deSCrlbed earller 29 toppings.push (newTop) ;
. . 30 }
e However, this change reduces the effective)
] . , 32}
concurrency in the code, so it makes things
slightly worse Note: a “thread-safe” stack prevents data races on

itself since only one thread can modify it at a time

1 public class PhoneMonitor {
2 private int numMinutes = 0;
Pro blem 3a 3 private int numAccesses = 0;
4 private int maxMinutes = 200;
5 private int maxAccesses = 10;
6 private boolean phoneOn = true;
7 private Object accessesLock = new Object() ;
8 private Object minutesLock = new Object() ;
9
DOGS the PhoneMonitor CIaSS haVGZ 10 public void accessPhone (int minutes) {
11 if (phoneOn) {
. . 12 synchronized (accessesLock) {
a race condition potential for deadlock 13 synchronized (minutesLock) {
14 numAccesses++;
a data race none of these > T eiiea () ke
17 }
. e s 18 }
e Thereis a data race on phoneOn. By definition, 19)
. ong 20 }
this is also a race condition 21
. . 22 private void checkLimits() {
([] Thl’ead 1 COUld be at ||ne 11 read'ng phoneOl’l, 23 synchronized (minutesLock) ({
. . 0 - 24 synchronized (accessesLock) {
Whlle Thread 2 |S at |Iﬂe 27 ertlng phoneOn 25 if (numAccesses >= maxAccesses
g o c 26 | | numMinutes >= maxMinutes) {
o Thisis a write-read data race 27 phoneon = false;
28 }
29 }
30 }
31 }
32}

Note: the synchronized keyword is reentrant. The
thread holds the lock, not the function call.

Problem 3b

Suppose we made the checkLimits method public.
Does this modified PhoneMonitor class have:

a race condition potential for deadlock
a data race none of these

Same data race on phoneOn still exists
However, there is now also the potential for deadlock
Suppose two threads call accessPhone () and
checkLimits () at the same time
o Thread 1 calls accessPhone () and acquires
accessesLock
o Thread 2 calls checkLimits () and acquires
minutesLock
o Now Thread 1 wants to acquire minutesLock,
while Thread 2 wants to acquire accessesLock

1 public class PhoneMonitor {

2 private int numMinutes = 0;

3 private int numAccesses = 0;

4 private int maxMinutes = 200;

5 private int maxAccesses = 10;

6 private boolean phoneOn = true;

7 private Object accessesLock = new Object() ;
8 private Object minutesLock = new Object() ;
9

10 public void accessPhone (int minutes) {

11 if (phoneOn) {

12 synchronized (accessesLock) {

13 synchronized (minutesLock) ({
14 numAccesses++;

15 numMinutes += minutes;

16 checkLimits () ;

17 }

18 }

19 }

20 }

21

22 private void checkLimits() {

23 synchronized (minutesLock) ({

24 synchronized (accessesLock) {

25 if (numAccesses >= maxAccesses
26 | | numMinutes >= maxMinutes) {
27 phoneOn = false;

28 }

29 }

30 }

31 }

32}

Note: the synchronized keyword is reentrant. The
thread holds the lock, not the function call.

