
Tries Microteach

Motivation

Imagine you're writing a message on your phone.
As you start typing a word, your phone suggests
possible completions. How does this work?
● How do we store common words?
● How do we retrieve them based on a prefix?

Tries

A trie is a tree-based data structure used primarily for efficient storage and retrieval of
string-keyed data.
● Has regular tree components.
● Each branch stores part of a key.
● The key for a node is represented by the path from

the root to that node.
● Nodes store the value corresponding to the key.

TrieNode {
 int value;
 Map<Character, Node> children;
}

a

p

p

d

d

null

null

null

4

5

3

simple implementation of a Trie node a Trie storing the key-value pairs
(“ad”, 5), (“add”, 3), (“app”, 4)

Drawing Tries

Generally, tries are drawn as a tree,
where nodes have a value, and branches
have a character.

a

p

p

d

d

null

null

null

4

5

3

d

v: 5

p

v: null

d p

v: null

v: 3 v: 4

a

v: null

We may also draw tries such that nodes
have a value, and also a table that maps
characters (keys) to children nodes (values).

Tries: insert(“dot”, 3)

We want to insert the key-value (“dot”, 3)
1. Start at the root
2. Create branch “d” to node with value null
3. Traverse down the “d” branch
4. Create branch “o” to node with value null
5. Traverse down the “o” branch
6. Create branch “t” to node with value 3

null

null

d

null

o

3

t

Tries: insert(“do”, 7)

We want to insert the key-value (“do”, 7)
1. Start at the root
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. Update the current node’s value to 7

null

null

d

o

3

t

7null

Tries: find()

find(“”) // miss
find(“d”) // miss
find(“do”) // returns 7
find(“dot”) // returns 3

null

null

d

7

o

3

t

Questions?

Tries: delete(“do”)

We want to delete the key “do”
1. Start at the root.
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. The node we want to remove has a child, so

only remove the node’s value (i.e. lazy deletion)

null

null

d

o

3

t

7null

Tries: delete(“dot”)

We want to delete the key “dot”
1. Start at the root
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. The “t” branch exists, so traverse down
5. The node we want to remove has no children,

so remove the entire node
6. Backtrack through previously traversed nodes

and remove them until we either reach a node
with value, a node with children, or the root

null

null

d

null

o

3

t

Problem 1

Problem 1

Try insert, find, and delete operations on the following Trie.

f

l

y

o

o

null

null

null

4

null

3

null

r

y

2

Problem 1a: insert(“food”, 5)

Answer:

f

l

y

o

o

null

null

null

4

null

3

null

r

y

2

5

d

3

Problem 1b: delete(“foo”)

Answer:

f

l

y

o

o

null

null

null

4

null

null

null

r

y

2

5

d

Problem 1c: find(“fry”)

Answer:

f

l

y

o

o

null

null

null

4

null

null

null

r

y

2

5

d

find(“fry”) //returns 2

Problem 1d:

Answer:

f

l

y

o

o

null

null

null

4

null

null

null

r

y

2

5

d

(“food”, 5)
(“fly”, 4)
(“fry”, 2)

Questions?

Problem 2

Problem 2a

Insert all possible binary strings of lengths 0-3 (i.e. ‘’, ‘0’, ‘1’, ..., ‘110’, ‘111’) into a trie.
Answer:

true

true

1

true

1

true

1

true

0

true

0

true

0

true

1

true

0

true

1

true

1

true

0

true

0

true

1

true

0

From here, remove all binary strings of length 2. How many nodes would disappear? Why?
Answer: 0 nodes. We still need to maintain pointers to nodes representing binary strings of
length 3. Therefore, we only update the values in the nodes to null.

Problem 2b

true

true

1

true

1

true

1

true

0

true

0

true

0

true

1

true

0

true

1

true

1

true

0

true

0

true

1

true

0

Length 0:

Length 1:

Length 2:

Length 3:

false false false false

From here, remove all binary strings of length 3. How many nodes would disappear? Why?

Problem 2c

Answer: 12 nodes. We can delete all nodes representing binary strings of length 2-3 since
these do not point to any relevant nodes.

true

true

1

true

1

true

1

true

0

true

0

true

0

true

1

true

0

true

1

true

1

true

0

true

0

true

1

true

0

Length 0:

Length 1:

Length 2:

Length 3:

false false false false

false false false false false false false false

Thank You!

