
Tries Microteach



Motivation

Imagine you're writing a message on your phone. 
As you start typing a word, your phone suggests 
possible completions. How does this work?
● How do we store common words?
● How do we retrieve them based on a prefix?



Tries

A trie is a tree-based data structure used primarily for efficient storage and retrieval of 
string-keyed data.
● Has regular tree components.
● Each branch stores part of a key.
● The key for a node is represented by the path from

the root to that node.
● Nodes store the value corresponding to the key.

TrieNode {
  int value;
  Map<Character, Node> children;
}
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simple implementation of a Trie node a Trie storing the key-value pairs
(“ad”, 5), (“add”, 3), (“app”, 4)



Drawing Tries

Generally, tries are drawn as a tree, 
where nodes have a value, and branches 
have a character.
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We may also draw tries such that nodes 
have a value, and also a table that maps 
characters (keys) to children nodes (values).



Tries: insert(“dot”, 3)

We want to insert the key-value (“dot”, 3)
1. Start at the root
2. Create branch “d” to node with value null
3. Traverse down the “d” branch
4. Create branch “o” to node with value null
5. Traverse down the “o” branch
6. Create branch “t” to node with value 3
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Tries: insert(“do”, 7)

We want to insert the key-value (“do”, 7)
1. Start at the root
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. Update the current node’s value to 7
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Tries: find()

find(“”)    // miss
find(“d”)   // miss
find(“do”)  // returns 7
find(“dot”) // returns 3
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Questions?



Tries: delete(“do”)

We want to delete the key “do”
1. Start at the root.
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. The node we want to remove has a child, so 

only remove the node’s value (i.e. lazy deletion)
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Tries: delete(“dot”)

We want to delete the key “dot”
1. Start at the root
2. The “d” branch exists, so traverse down
3. The “o” branch exists, so traverse down
4. The “t” branch exists, so traverse down
5. The node we want to remove has no children, 

so remove the entire node
6. Backtrack through previously traversed nodes 

and remove them until we either reach a node 
with value, a node with children, or the root
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Problem 1



Problem 1

Try insert, find, and delete operations on the following Trie.
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Problem 1a: insert(“food”, 5)  

Answer:
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Problem 1b: delete(“foo”) 

Answer:
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Problem 1c: find(“fry”)

Answer:
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find(“fry”) //returns 2



Problem 1d:

Answer:
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(“food”, 5)
(“fly”, 4)
(“fry”, 2)



Questions?



Problem 2



Problem 2a

Insert all possible binary strings of lengths 0-3 (i.e. ‘’, ‘0’, ‘1’, ..., ‘110’, ‘111’) into a trie.
Answer:
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From here, remove all binary strings of length 2. How many nodes would disappear? Why?
Answer: 0 nodes. We still need to maintain pointers to nodes representing binary strings of 
length 3. Therefore, we only update the                        values in the nodes to null.

Problem 2b
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From here, remove all binary strings of length 3. How many nodes would disappear? Why?

Problem 2c

Answer: 12 nodes. We can delete all nodes representing binary strings of length 2-3 since 
these do not point to any relevant nodes.
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Thank You!


