
Recurrences
CSE 332 - Section 3



Recurrence Relations



Recurrence Relations

● Describes the time complexity of recursive algorithms, often uses T(n)

○ Same way that f(n) and g(n) described time complexity of non 

recursive algorithms last week

● Generally in the form:

OR

“Divide & Conquer”

“Chip & Conquer”



Recurrence Relations

● n = input size
● T(n) = runtime for input size n
● b = how input shrinks for next recursive call(s) (reduction factor/ constant)
● a = number of recursive calls made per function call (branching factor)

foo(n) {
    if (n <= 1) {
        return 1;
    }
    return foo(n-1) + foo(n-1);
}

a = 2
b = 1

OR

bar(n) {
    if (n <= 1) {
        return 1;
    }
    return 2 * bar(n/2);
}

a = 1
b = 2



Problem 0a

1  f(n) {
2    if (n <= 0) {
3      return 1
4    }
5    return 2 * f(n - 1) + 1
6  }

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

● When does the base case occur?

● What is the branching factor a?

● What is the reduction factor /                 b?

● What is the amount of non-recursive work f(n)?

n ≤ 0

?

a = 1 since we only make one recursive call

b = 1 since we always reduce input size by 1constantconstant

constant, which we can denote as c1

Recurrence relation forms:

●  



Tree Method Overview



Big Idea: T(n/b)
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Asymptotically, these never matter!



Q1(a) Tree Method Example
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Big Idea: T(n - b)
Red box 

represents a 
problem instance

Blue value 
represents time 

spent at that level 
of recursion

n f(n)

n - b n - b

n - 2b n - 2b n - 2b n - 2b

 

…
… … … …

x x x … xx

f(n-b)f(n-b)

f(n-2b) f(n-2b) f(n-2b)f(n-2b)

c c c c c

≈ n/b levels

 
Asymptotically, these never matter!

⇒ ai f(n - bi) 
work per level



Q1(f): Tree method

n Work: 1

 n-2 n-2 

n-4 n-4 n-4 n-4

… … … …

1 1 1 … 11

11

1 1 1

1 1 1 1 1

≈ n/2 levels 

⇒ 2i work per level

 

 

1

#children #levels work



Q1(f): Solving the Summation

For a geometric series with a ratio < 1, it converges!

 

 

 
(Sum of a finite geometric series)

 

 

 

  

Note: formula like this will be provided for exams



What Parts 
Matter?

Asymptotically Speaking



Q1(b) Base Case Doesn’t Matter!
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Q1(c) Constants for f(n) Don’t Matter!

 

 

 

  

    

… … … …

   …    

 

  

      

Red box represents a 
problem instance

Blue value represents 
time spent at that level 

of recursion

 

… …
    



Q1(d) Branching Factor (a) Matters!
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Solving the Summation

can move the n using the constant multiple rule 

Geometric Series Sum Rule

simplification + props. of log & exponents:

multiplied by -2 and distributed our n

log rules:



 Q1(e) Reduction Factor (/b) Does Matter!
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Solving the Summation

This is a geometric series with a ratio < 1, so it converges to a constant!

can move the n using the constant multiple rule 



 Reduction Constant (-b) Matters!
Left/top represents -1 case
Right/bottom represents -2 

case n 1

n-1 or n-2 n-1 or n-2 

n-2 or n-4 n-2 or n-4 n-2 or n-4 n-2 or n-4

… … … …

1 1 1 … 11

11

1 1 11

1 1 1 1 1

≈ n levels for -1
≈ n/2 levels for -2

⇒ 2i

work per level for 
both cases

Hint: Use the Finite Geometric Series (#7 on Math Identities) to solve these summations!



General 
Advice



Recursive Running Times - 
Guidance
•  

OR



 
•  



 

● Draw a tree such that:
○ Each node has a children
○ The “size of each node is -b times the size of its 

parent
○ The “work” for each node is f applied to its size
○ The height of the tree is n/b

● Sum the tree horizontally
○ I.e. identify the total work done at each level

● Sum the levels’ work vertically
○ Given the sum of all work in the entire tree

Only differences between /b 
cases highlighted in yellow



Putting it All Together



Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

?



Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

● 2 function calls ->  a = 2 
● Reducing input size by half -> (n / 2)
● Non-recursive work has loop with n iterations 

and some constant work -> f(n) = c_2n + c_1 



Problem 2(b)
(b) Find a closed form to your answer for (a).





Our first call to T(n)



Our first call to T(n)
Input:  n



Our first 
call to T(n)

Input:  n
Work:  
c2*n + c1



Input: 
n/2

Input:
n/2

“2T(...)” = 2 
recursive calls 

Input:  n
Work:  
c2*n + c1



Input:  
n/2

Input:  
n/2

Input:  n
Work:  
c2*n + c1



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n
Work:  
c2*n + c1



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  
n/4

Input:  
n/4

Input:  
n/4

Input:  
n/4

Input:  n
Work:  
c2*n + c1



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n
Work:  
c2*n + c1



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n
Work:  
c2*n + c1

Input:  1 Input:  1 Input:  1 Input:  1



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n
Work:  
c2*n + c1

Input:  1
Work: c0

Input:  1
Work: c0

Input:  1
Work: c0

Input:  1
Work: c0



Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/2
Work:  
c2*(n/2)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n/4
Work:  
c2*(n/4)+c1

Input:  n
Work:  
c2*n + c1

Input:  1
Work: c0

Input:  1
Work: c0

Input:  1
Work: c0

Input:  1
Work: c0

Since we’re in /b case:

With a, b, and f(n) plugged 
in:



Thank You!


