
Recurrences
CSE 332 - Section 3

Recurrence Relations

Recurrence Relations

● Describes the time complexity of recursive algorithms, often uses T(n)

○ Same way that f(n) and g(n) described time complexity of non

recursive algorithms last week

● Generally in the form:

OR

“Divide & Conquer”

“Chip & Conquer”

Recurrence Relations

● n = input size
● T(n) = runtime for input size n
● b = how input shrinks for next recursive call(s) (reduction factor/ constant)
● a = number of recursive calls made per function call (branching factor)

foo(n) {
 if (n <= 1) {
 return 1;
 }
 return foo(n-1) + foo(n-1);
}

a = 2
b = 1

OR

bar(n) {
 if (n <= 1) {
 return 1;
 }
 return 2 * bar(n/2);
}

a = 1
b = 2

Problem 0a

1 f(n) {
2 if (n <= 0) {
3 return 1
4 }
5 return 2 * f(n - 1) + 1
6 }

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

● When does the base case occur?

● What is the branching factor a?

● What is the reduction factor / b?

● What is the amount of non-recursive work f(n)?

n ≤ 0

?

a = 1 since we only make one recursive call

b = 1 since we always reduce input size by 1constantconstant

constant, which we can denote as c1

Recurrence relation forms:

●

Tree Method Overview

Big Idea: T(n/b)

… … … …

 …

 c

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

…

… …

Asymptotically, these never matter!

Q1(a) Tree Method Example

… … … …

 …

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

Big Idea: T(n - b)
Red box

represents a
problem instance

Blue value
represents time

spent at that level
of recursion

n f(n)

n - b n - b

n - 2b n - 2b n - 2b n - 2b

…
… … … …

x x x … xx

f(n-b)f(n-b)

f(n-2b) f(n-2b) f(n-2b)f(n-2b)

c c c c c

≈ n/b levels

Asymptotically, these never matter!

⇒ ai f(n - bi)
work per level

Q1(f): Tree method

n Work: 1

 n-2 n-2

n-4 n-4 n-4 n-4

… … … …

1 1 1 … 11

11

1 1 1

1 1 1 1 1

≈ n/2 levels

⇒ 2i work per level

1

#children #levels work

Q1(f): Solving the Summation

For a geometric series with a ratio < 1, it converges!

(Sum of a finite geometric series)

Note: formula like this will be provided for exams

What Parts
Matter?

Asymptotically Speaking

Q1(b) Base Case Doesn’t Matter!

… … … …

 …

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Q1(c) Constants for f(n) Don’t Matter!

… … … …

 …

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Q1(d) Branching Factor (a) Matters!

… … … …

 …

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

Solving the Summation

can move the n using the constant multiple rule

Geometric Series Sum Rule

simplification + props. of log & exponents:

multiplied by -2 and distributed our n

log rules:

 Q1(e) Reduction Factor (/b) Does Matter!

… … … …

 …

Red box represents a
problem instance

Blue value represents
time spent at that level

of recursion

… …

Solving the Summation

This is a geometric series with a ratio < 1, so it converges to a constant!

can move the n using the constant multiple rule

 Reduction Constant (-b) Matters!
Left/top represents -1 case
Right/bottom represents -2

case n 1

n-1 or n-2 n-1 or n-2

n-2 or n-4 n-2 or n-4 n-2 or n-4 n-2 or n-4

… … … …

1 1 1 … 11

11

1 1 11

1 1 1 1 1

≈ n levels for -1
≈ n/2 levels for -2

⇒ 2i

work per level for
both cases

Hint: Use the Finite Geometric Series (#7 on Math Identities) to solve these summations!

General
Advice

Recursive Running Times -
Guidance
•

OR

•

● Draw a tree such that:
○ Each node has a children
○ The “size of each node is -b times the size of its

parent
○ The “work” for each node is f applied to its size
○ The height of the tree is n/b

● Sum the tree horizontally
○ I.e. identify the total work done at each level

● Sum the levels’ work vertically
○ Given the sum of all work in the entire tree

Only differences between /b
cases highlighted in yellow

Putting it All Together

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

?

Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

● 2 function calls -> a = 2
● Reducing input size by half -> (n / 2)
● Non-recursive work has loop with n iterations

and some constant work -> f(n) = c_2n + c_1

Problem 2(b)
(b) Find a closed form to your answer for (a).

Our first call to T(n)

Our first call to T(n)
Input: n

Our first
call to T(n)

Input: n
Work:
c2*n + c1

Input:
n/2

Input:
n/2

“2T(...)” = 2
recursive calls

Input: n
Work:
c2*n + c1

Input:
n/2

Input:
n/2

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input:
n/4

Input:
n/4

Input:
n/4

Input:
n/4

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1 Input: 1 Input: 1 Input: 1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: n/2
Work:
c2*(n/2)+c1

Input: n/2
Work:
c2*(n/2)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n/4
Work:
c2*(n/4)+c1

Input: n
Work:
c2*n + c1

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Input: 1
Work: c0

Since we’re in /b case:

With a, b, and f(n) plugged
in:

Thank You!

