## Recurrences

#### CSE 332 - Section 3



# **Recurrence Relations**



#### **Recurrence Relations**

- Describes the time complexity of recursive algorithms, often uses T(n)
  - Same way that f(n) and g(n) described time complexity of non recursive algorithms last week
- Generally in the form:

$$T(n) = aTig(rac{n}{b}ig) + f(n)$$
 "Divide & Conquer"   
 
$$\frac{\mathrm{OR}}{T(n)} = aT(n-b) + f(n)$$
"Chip & Conquer"

### **Recurrence Relations**

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \text{ or } T(n) = aT(n-b) + f(n)$$

- n = input size
- T(n) = runtime for input size n
- b = how input shrinks for next recursive call(s) (reduction factor/ constant)
- a = number of recursive calls made per function call (branching factor)

oo (n) {  
if (n <= 1) {  
return 1; 
$$b = 1$$
  
}  
return foo (n-1) + foo (n-1);

## Problem 0a

Recurrence relation forms:

• 
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

T(n) = aT(n-b) + f(n)

Find a recurrence T(n) modelling the worst-case runtime complexity of f(n)

```
1 f(n) {

2 if (n <= 0) {

3 return 1 

4 }

5 return 2 * f(n - 1) + 1

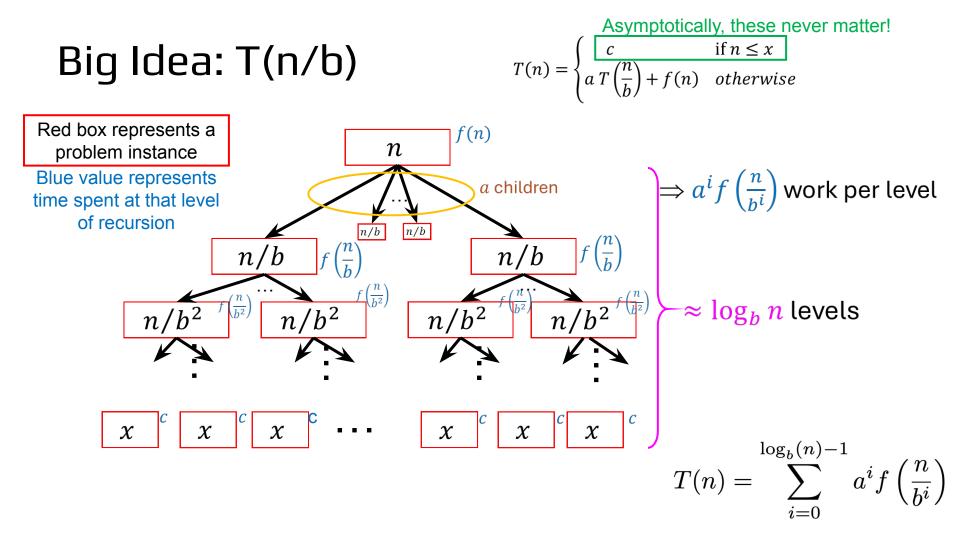
6 }

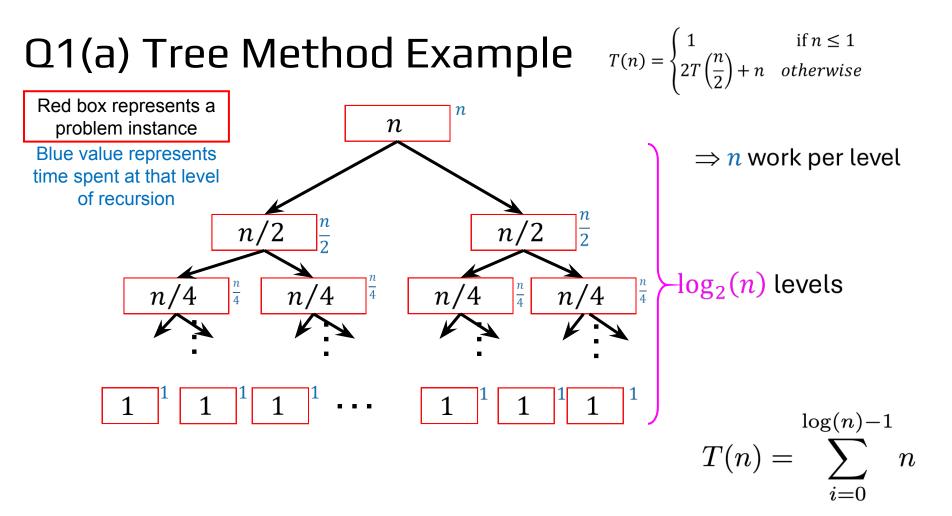
T(n) = \begin{cases} c_0 & \text{if } n \le 0 \\ T(n-1) + c_1 & \text{otherwise} \end{cases}
```

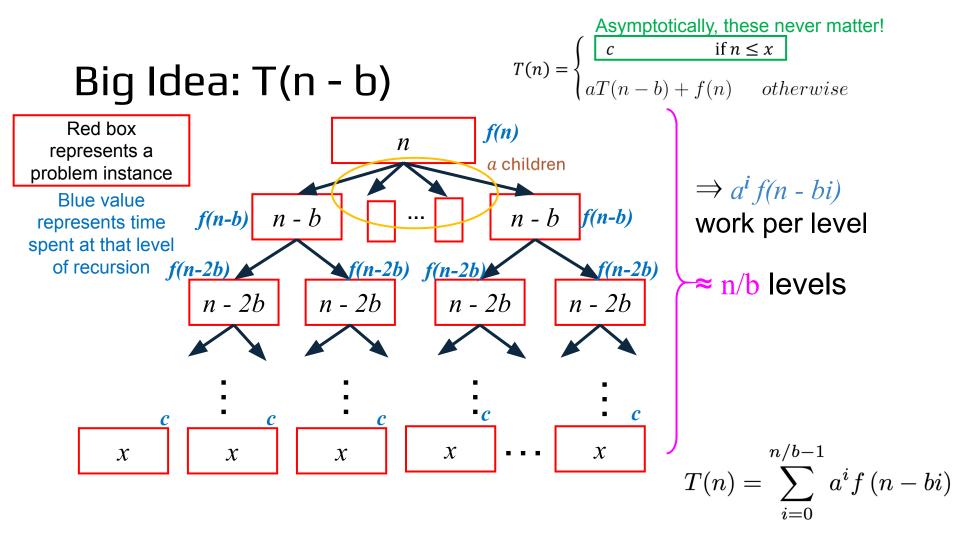
- When does the base case occur?  $n \leq 0$
- What is the branching factor a? a = 1 since we only make one recursive call
- What is the reduction factor / constant b? b = 1 since we always reduce input size by 1
- What is the amount of non-recursive work f(n)? constant, which we can denote as  $c_1$

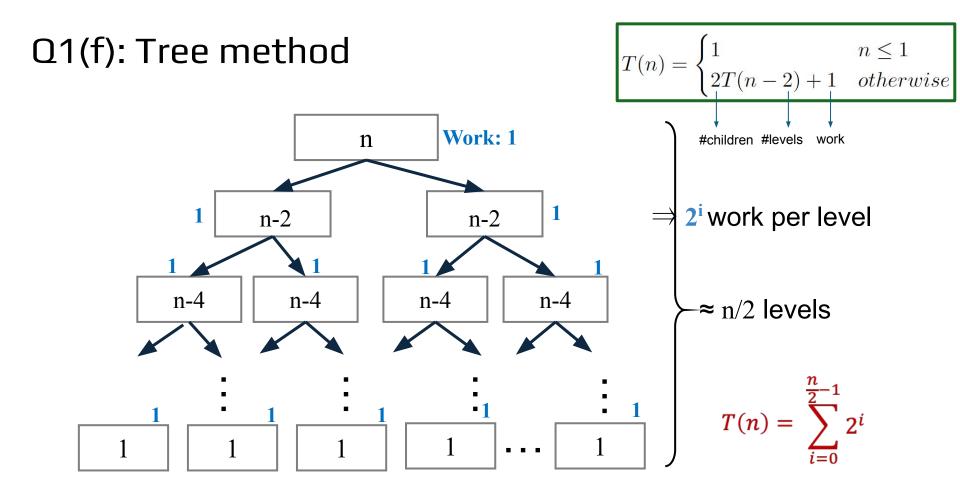
# **Tree Method Overview**



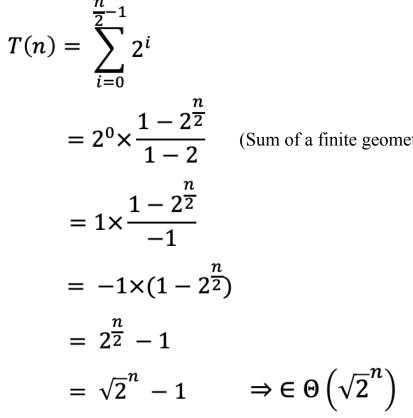




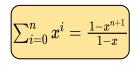




#### Q1(f): Solving the Summation



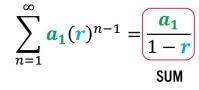
$$S_n = a_1 \left( \frac{1 - r^n}{1 - r} \right)$$



(Sum of a finite geometric series)

- $a_1 =$ first term
- r = common ratio
- n = number of terms

For a geometric series with a ratio < 1, it converges!

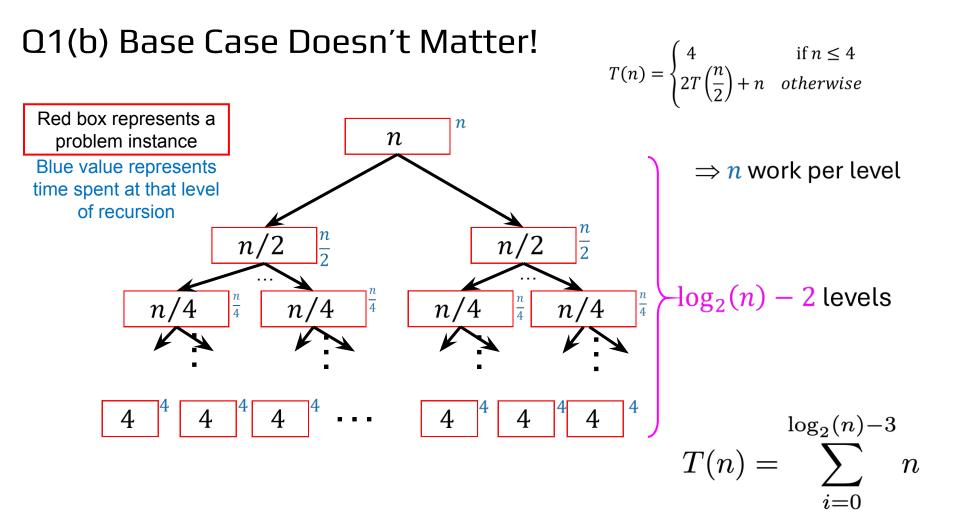


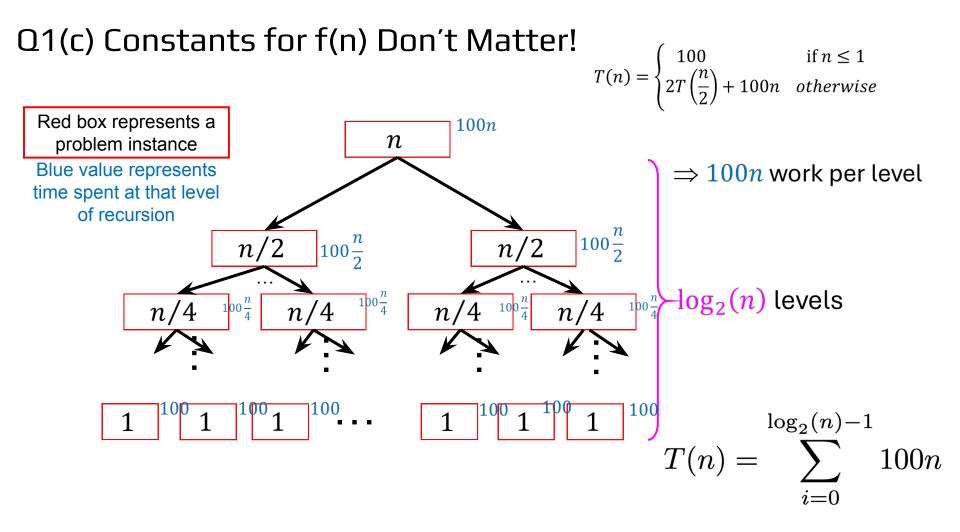
Note: formula like this will be provided for exams

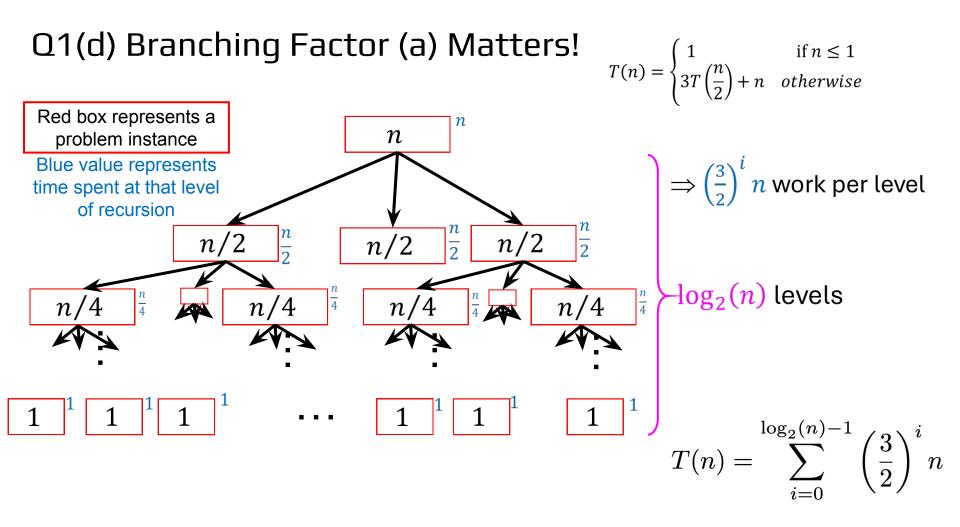
# What Parts Matter?

Asymptotically Speaking







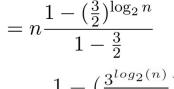


## Solving the Summation

$$T(n) = \sum_{i=0}^{\log_2(n)-1} \left(\frac{3}{2}\right)^i n$$

$$= n \sum_{i=0}^{\log_2(n)-1} \left(\frac{3}{2}\right)^i$$

can move the n using the constant multiple rule



Geometric Series Sum Rule

$$\sum_{i=0}^n x^i = rac{1-x^{n+1}}{1-x}$$

$$= n \frac{1 - \left(\frac{3^{\log_2(n)}}{n}\right)}{-\frac{1}{2}}$$

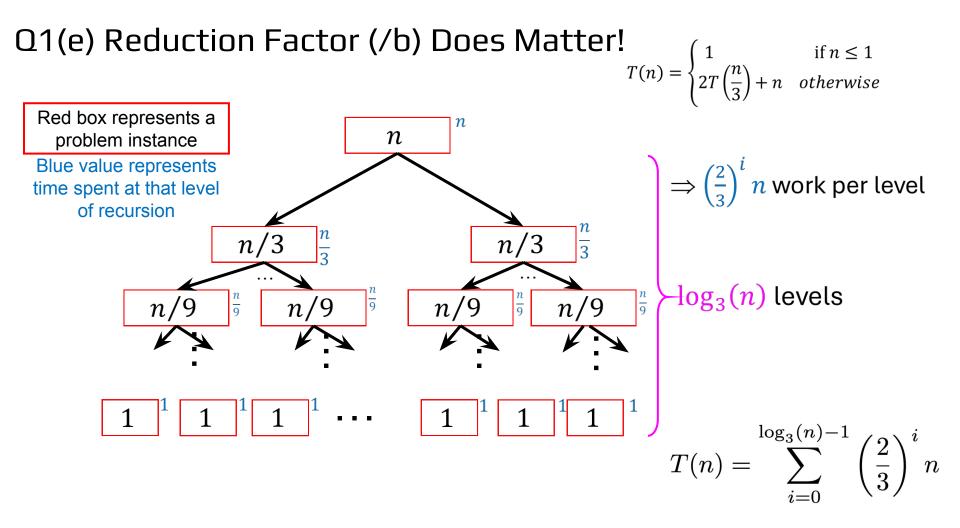
simplification + props. of log & exponents:  $(\frac{3}{2})^{log_2(n)} = \frac{3^{log_2(n)}}{3^{log_2(n)}} = \frac{3^{log_2(n)}}{3^{log_2(n)}}$ 

multiplied by -2 and distributed our n

 $= 2 \cdot n^{\log_2 3} - 2n$ 

 $= 2 \cdot 3^{\log_2 n} - 2n$ 

log rules:  $3^{\log_2 n} = n^{\log_2 3} (a^{\log_b c} = c^{\log_b a})$ 



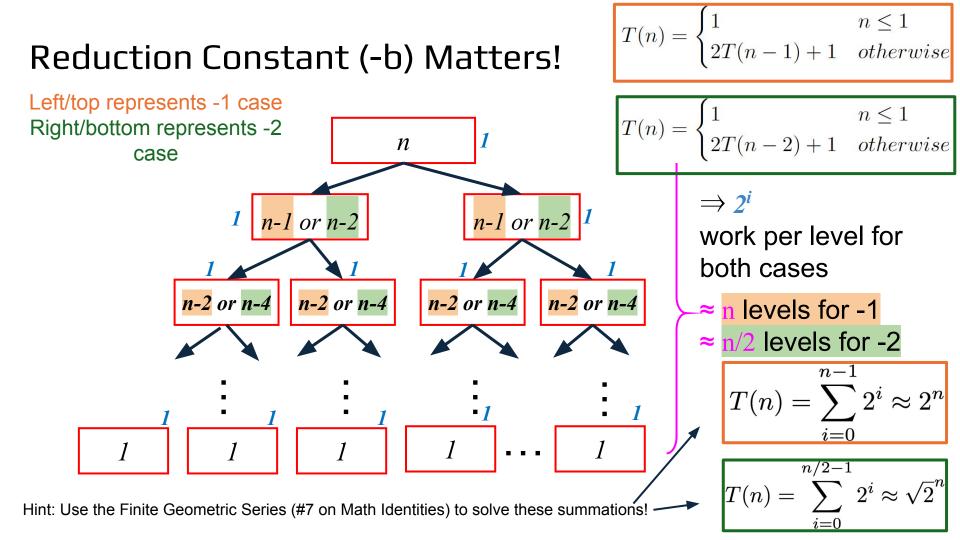
## Solving the Summation

$$T(n) = \sum_{i=0}^{\log_3(n)-1} \left(\frac{2}{3}\right)^i n$$

$$=n\sum_{i=0}^{\log_3(n)-1}\left(rac{2}{3}
ight)^i$$
 can move the n using the constant multiple rule

This is a geometric series with a ratio < 1, so it converges to a constant!

$$T(n)\in \Theta(n)$$



# General Advice



## Recursive Running Times -Guidance

- •Identify the number of subproblems you will have a recursive call for
  - This gives *a*
- Identify the size of each of the subproblems
  - This gives *b*
- Identify (asymptotically) the non-recursive running time
  - You can ignore constants and non-dominant terms!
  - This gives f(n)
- Express running time as  $T(n) = aT\left(\frac{n}{b}\right) + f(n)$  <u>OR</u>

$$T(n) = aT(n-b) + f(n)$$

## Solving T(n) Using The Tree method • $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

- Draw a tree such that:
  - Each node has *a* children
  - The "size" of each node is  $\frac{1}{h}$  times the size of its parent
  - The "work" for each node is f applied to its size
  - The height of the tree is  $\log_b n$
- Sum the tree horizontally
  - i.e. identify the total work done at each level
- Sum the levels' work vertically
  - Gives the sum of all work in the entire tree

## Solving T(n) Using The Tree method

$$T(n) = aT(n-b) + f(n)$$

- Draw a tree such that:
  - Each node has *a* children
  - The "size of each node is -b times the size of its parent
  - The "work" for each node is f applied to its size
  - The height of the tree is n/b
- Sum the tree horizontally
  - I.e. identify the total work done at each level
- Sum the levels' work vertically
  - Given the sum of all work in the entire tree

Only differences between /b cases highlighted in yellow

# Putting it All Together



### Problem 2(a)

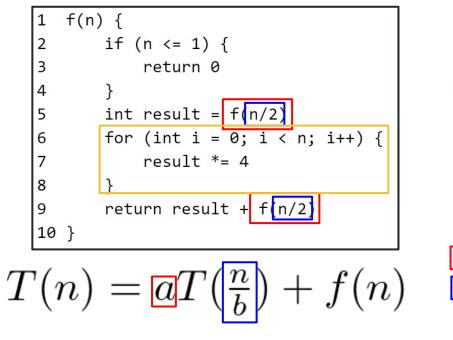
(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).

```
f(n) {
1
       if (n <= 1) {
2
            return 0
3
4
5
       int result = f(n/2)
6
       for (int i = 0; i < n; i++) {</pre>
            result *= 4
7
8
       return result + f(n/2)
9
10 }
```

$$\begin{array}{l} T(n) = \\ \begin{cases} c_0 & n = 1 \\ \hline ? & otherwise \end{array} \end{array}$$

## Problem 2(a)

(a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n).



$$T(n) = egin{cases} c_0 & n = 1 \ 2T(rac{n}{2}) + c_2 n + c_1 & otherwise \end{cases}$$

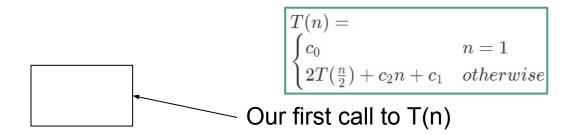
2 function calls -> a = 2
 Reducing input size by half -> (n / 2)
 Non-recursive work has loop with n iterations and some constant work -> f(n) = c\_2n + c\_1

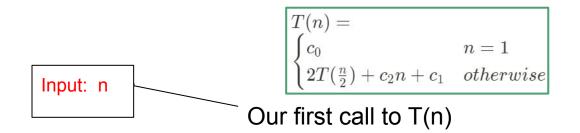
## Problem 2(b)

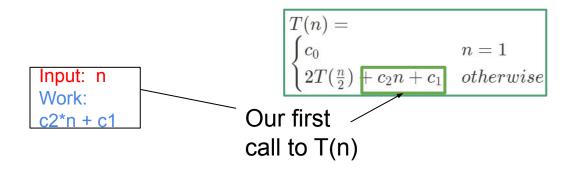
(b) Find a closed form to your answer for (a).

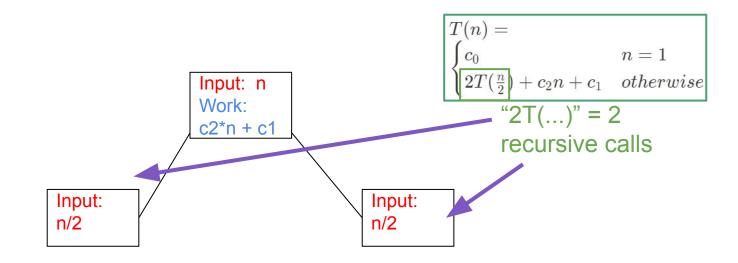
 $T(n) = egin{cases} c_0 & n = 1 \ 2T(rac{n}{2}) + c_2 n + c_1 & otherwise \end{cases}$ 

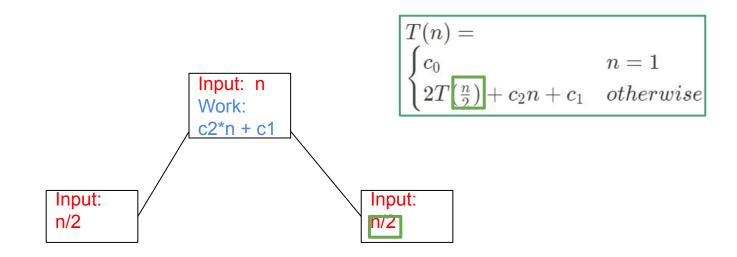
$$T(n) = egin{cases} c_0 & n = 1 \ 2T(rac{n}{2}) + c_2 n + c_1 & otherwise \end{cases}$$

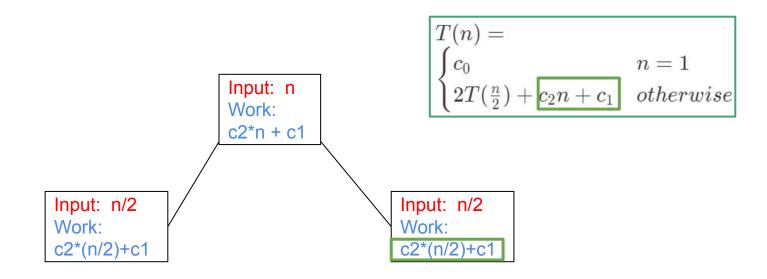


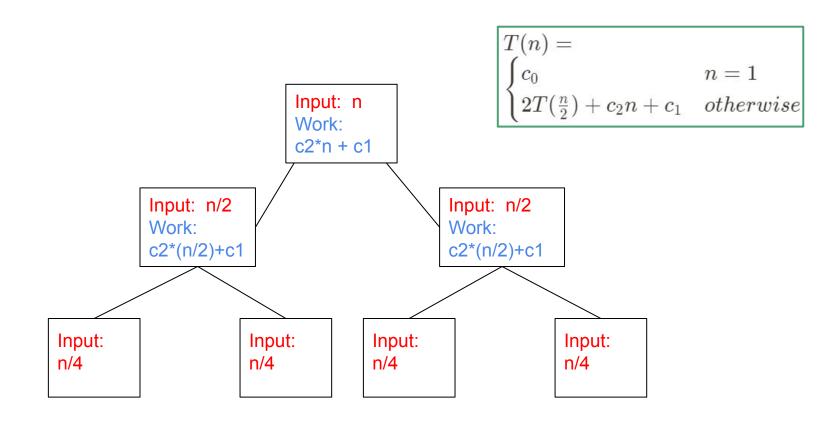


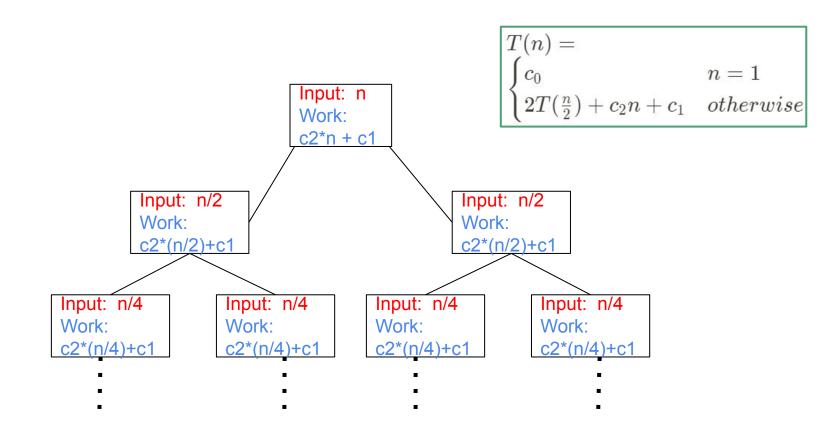


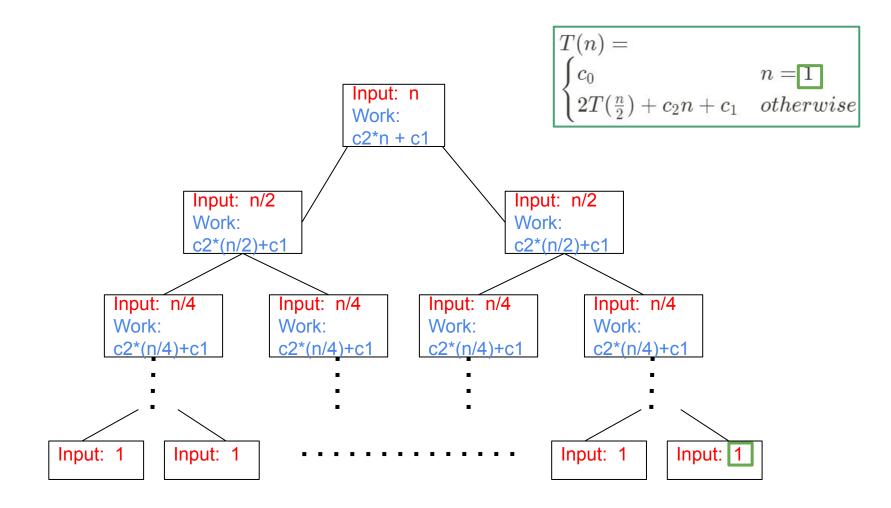


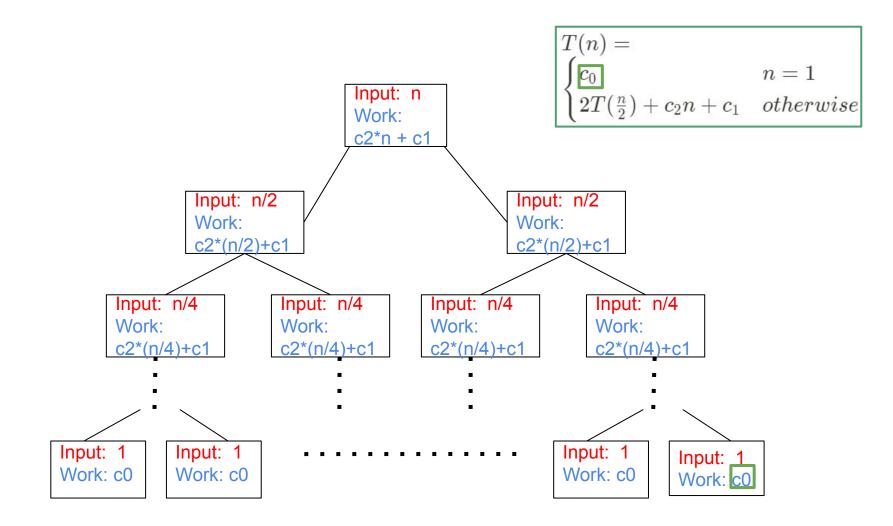


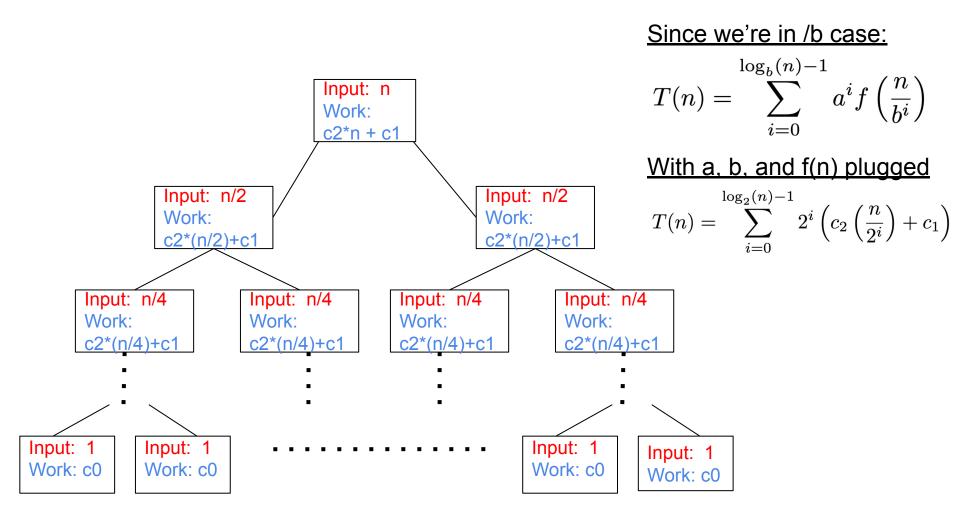












# Thank You!

