CSE 332 - Section 2 Worksheet

1. Big-Oh Proofs

For each of the following, prove that $f(n) \in O(g)$:

a) f(n) = 7n $g(n) = \frac{n}{10}$

Let c = 70 and $n_0 = 1$ Next we show that $\forall n > n_0$ we have that $7n \le c \cdot \frac{n}{10}$ We start with the right-hand side of the inequality. $70 \cdot \frac{n}{10} = 7n$ Since $7n = c \cdot \frac{n}{10}$, then certainly $7n \le c \cdot \frac{n}{10}$ And so $7n \in O\left(\frac{n}{10}\right)$

b) f(n) = 1000 $g(n) = 3n^2$

Let c = 1 and $n_0 = 20$ Next we show that $\forall n > n_0$ we have that $1000 \le c \cdot 3n^2$ We start with the right-hand side of the inequality. $c \cdot 3n^2 = 3n^2$ When n = 20 we have $3n^2 = 3 \cdot 400 = 1200$, and when n > 20 we have that $3n^2 > 1200$ And so $1000 \in O(3n^2)$

c)
$$f(n) = 2^n$$
 $g(n) = 3^{2n}$

Let c = 1 and $n_0 = 2$

Next, we show that $\forall_n > n_0$ we have that $2^n \leq c * 3^{2n}$ We start with the right-hand side of the inequality. $2^n \leq 1 * 3^{2n}$ $2^n \leq 9^n$ This is certainly true $\forall_n >= 2$

d) $f(n) = 7n^2 + 3n$ $g(n) = n^4$

Let c = 10 and $n_0 = 1$ Next we show that $\forall n > n_0$ we have that $7n^2 + 3n \le c \cdot n^4$ We start with the left-hand side of the inequality. $7n^2 + 3n \le 7n^2 + 3n^2$ because $n^2 > n$ whenever n > 1. Likewise $10n^2 \le 10n^4$ whenever n > 1And so $7n^2 + 3n \in O(n^4)$

CSE 332 - Section 2 Worksheet

e) $f(n) = n + 2n \lg n$ $g(n) = n \lg n$ Let c = 3 and $n_0 = 2$ Next we show that $\forall n > n_0$ we have that $n + 2n \log_2 n \le c \cdot n \log_2 n$ We start with the left-hand side of the inequality. $n + 2n \log_2 n \le 3n \log_2 n$ because $\log_2 n > 1$ whenever n > 2And so $n + 2n \log_2 n \in O(n \log_2 n)$

Big-Theta Proofs 2.

For each of the following, prove that $f(n) \in \Theta(q)$: $g(n) = \frac{n}{10}$

a) f(n) = 7n

The *O* portion was done in 1a, so all that remains is to show $7n \in \Omega\left(\frac{n}{10}\right)$ Again, let c=70 and $n_0=1$ Next we show that $\forall n > n_0$ we have that $7n \ge c \cdot \frac{n}{10}$ We start with the right-hand side of the inequality. $70 \cdot \frac{n}{10} = 7n$ Since $7n = c \cdot \frac{n}{10}$, then certainly $7n \ge c \cdot \frac{n}{10}$ And so $7n \in \Omega\left(\frac{n}{10}\right)$

 $g(n) = 3n^3$ b) $f(n) = n^3 + 10n$

> First we will show that $n^3 + 10$ belongs to $O(3n^3)$ Let c = 1 and $n_0 = 3$ Next we show that $\forall n > n_0$ we have that $n^3 + 10 \le c \cdot 3n^3$ We start with the left-hand side of the inequality. $n^3 + 10 \le 2n^3$ because $n^3 > 10$ whenever $n \ge 3$. Since $2n^3 \le 3n^3$ we can conclude $n^3 + 10 \in O(3n^3)$. Next we will show that $n^3 + 10$ belongs to $\Omega(3n^3)$ Let $c = \frac{1}{2}$ and $n_0 = 1$ Next we show that $\forall n > n_0$ we have that $n^3 + 10 \ge c \cdot 3n^3$ We start with the left-hand side of the inequality. Observe that $n^3 + 10 \ge \frac{1}{2} \cdot 3n^3$ for all positive values of *n*, therefore $n^3 + 10 \in \Omega(3n^3)$.

CSE 332 - Section 2 Worksheet

3. Algorithm Running Time

Consider the following method which finds the number of unique Strings within a given array of length n.

```
int numUnique(String[] values) {
1
2
       boolean[] visited = new boolean[values.length]
3
       for (int i = 0; i < values.length; i++) {</pre>
4
            visited[i] = false
       }
5
6
       int out = 0
       for (int i = 0; i < values.length; i++) {</pre>
8
            if (!visited[i]) {
                out += 1
10
                for (int j = i; j < values.length; j++) {</pre>
11
                     if (values[i].equals(values[j])) {
12
                         visited[j] = true
13
                     }
14
                }
15
            }
16
       }
17
       return out;
18 }
```

Determine a $\Theta(\cdot)$ bound on each function below. Start by (1) constructing an equation that models each function then (2) simplifying and finding a closed form.

a) f(n) = the worst-case runtime of numUnique

The worst case occurs when all strings in the array are unique. The running time will be quadratic because:

- The for-loop beginning on line 7 runs n times regardless of the inputs
- Visited[i] becomes true on line 12 whenever the string at index i matches some previous string. By having all strings be unique no indices of visited will become true, and so we will always enter the if statement on line 8
- The for loop on line 10 will occur n-i times, which is asymptotically the same as n (certainly not more than n and certainly also more than n/2 for at least half of the iterations)
- Between the loop on lines 7 and 10, we have quadratic running time.

b) g(n) = the best-case runtime of numUnique

The best case occurs when all strings match. The running time will be linear because:

• In the first iteration of the for-loop on line 7 we will mark visited[j] true for every index in the visited array, this means that the loop on line 10 will only ever occur once.