
CSE 332 - Section 2 Worksheet

1. Big-Oh Proofs

For each of the following, prove that : 𝑓(𝑛) ∈ 𝒪(𝑔)
a) 𝑓(𝑛) = 7𝑛 𝑔(𝑛) = 𝑛

10

b) 𝑓(𝑛) = 1000 𝑔(𝑛) = 3𝑛2

c) 𝑓(𝑛) = 2𝑛 𝑔(𝑛) = 32𝑛

d) 𝑓(𝑛) = 7𝑛2 + 3𝑛 𝑔(𝑛) = 𝑛4

CSE 332 - Section 2 Worksheet

e) 𝑓(𝑛) = 𝑛 + 2𝑛 lg 𝑛 𝑔(𝑛) = 𝑛 lg 𝑛

2. Big-Theta Proofs
For each of the following, prove that : 𝑓(𝑛) ∈ Θ(𝑔)

a) 𝑓(𝑛) = 7𝑛 𝑔(𝑛) = 𝑛
10

b) 𝑓(𝑛) = 𝑛3 + 10𝑛 𝑔(𝑛) = 3𝑛3

CSE 332 - Section 2 Worksheet

3. Algorithm Running Time
Consider the following method which finds the number of unique Strings within a given array of length . 𝑛

1 int numUnique(String[] values) {
2 boolean[] visited = new boolean[values.length]
3 for (int i = 0; i < values.length; i++) {
4 visited[i] = false
5 }
6 int out = 0
7 for (int i = 0; i < values.length; i++) {
8 if (!visited[i]) {
9 out += 1
10 for (int j = i; j < values.length; j++) {
11 if (values[i].equals(values[j])) {
12 visited[j] = true
13 }
14 }
15 }
16 }
17 return out;
18 }

Determine a bound on each function below. Start by (1) constructing an equation that models each function then Θ(·)
(2) simplifying and finding a closed form.

a) the worst-case runtime of numUnique 𝑓(𝑛) =

The worst case occurs when all strings in the array are unique. The running time will be quadratic
because:

● The for-loop beginning on line 7 runs n times regardless of the inputs
● Visited[i] becomes true on line 12 whenever the string at index i matches some previous string.

By having all strings be unique no indices of visited will become true, and so we will always enter
the if statement on line 8

● The for loop on line 10 will occur n-i times, which is asymptotically the same as n (certainly not
more than n and certainly also more than n/2 for at least half of the iterations)

● Between the loop on lines 7 and 10, we have quadratic running time.

b) the best-case runtime of numUnique 𝑔(𝑛) =

The best case occurs when all strings match. The running time will be linear because:
● In the first iteration of the for-loop on line 7 we will mark visited[j] true for every index in the

visited array, this means that the loop on line 10 will only ever occur once.

