
Section 2
Runtime



Big-Oh Review

 

  

Main ideas:
•In Big-O, we focus on the growth of the runtime as the input size n goes to infinity.
•Big-O represents an upper bound on the algorithm runtime. Not necessarily tight!



Big-Omega and Big-Theta

.



Practice

 



Practice

 

1. Always True
2. Always True
3. Sometimes True
4. Always True
5. Sometimes True
6. Sometimes True
7. Sometimes True
8. Always False



Practice

 

False



Worksheet problems

1. Prove that f(n) ∈ O(g)

a) f(n) = 7n, g(n) = n/10
b) f(n) = 1000, g(n) = 3n3

c) f(n) = 2n, g(n) = 32n

d) f(n) = 7n2 + 3n, g(n) = n4

e) f(n) = n + 2nlog(n), g(n) = nlog(n)



How to Approach these Problems

When trying to prove something like f(n) ∈ O(g), f(n) ∈ Ω(g), or 
f(n) ∈ Θ(g), you need to find a c and n0. 
● The proof, or final solution, for the problem should simply 

declare the values of c and n0 and should plug them in/explain 
why they make the inequality true.  

● The proof should not explain how to solve for c and n0- that 
would be your own work. 



 

 

 



1a) Proof - Final Solution



 

 



1b) Proof - Final Solution





1c) Proof - Final Solution

 



 

 



1d) Proof - Final Solution

•  



 

 



1e) Proof - Final Solution

•  



Worksheet problems
2. We provide functions f(n) and g(n). Prove that f(n) ∈ Θ(g)

a) f(n) = 7n, g(n) = n/10

b) f(n) = n3 + 10n, g(n) = 3n3



 

 



2a) Proof - Final Solution

•  



 



2b) Proof - Final Solution Part 1 

•  



2b) Proof - Final Solution Part 2 

•  



Get the Θ(·) bound of each 
function below.
a) f(n) = worst case running 

time
b) g(n) = best case running 

time

We will construct equations for 
each function and then simplify 
them to get a closed form.

Worksheet problems: Q3



First function (lines 3-5) always runs once. 

Worst case for lines 7-16 is if every value in 
array is unique. This means for every iteration 
of the outer loop, the inner loop will iterate 
through the rest of the array. Total number of 
iterations is n + (n-1) + (n-2) + … + 1. 
There is a formula for this sum: n * (n+1) / 2

f(n) = n + n(n+1)/2 => n2. This is quadratic 
running time

Do something similar to Q2 proofs to prove 
that n + n(n+1)/2 ∈ Θ(n2).

3a) f(n) = worst case running time



First function (lines 3-5) always runs once. 

Best case for lines 7-16 is if every value in 
array is the same. This means the inner loop 
will only run once: for the first iteration of the 
outer loop. Then, it will not run because every 
index will be visited after the first time.

g(n) = n + n => n
This is linear running time

Do something similar to Q2 proofs to prove 
that n + n ∈ Θ(n).

3b) g(n) = best case running time


