
Wrap-Up Hodgepodge CSE 332 Sp25

Lecture 28

Announcements

Monday Tuesday Wed Thursday Friday

This

Week
Ex 13

(MST,prog) due

TODAY

Ex 14 (P/NP, gs) due

Next

Week
Final :O

Outline

3 topics:

Topological Sort

Strongly Connected Components

P/NP wrap-up

Two More Simple Graph
Algorithms

What you need to know

What is a topological sort and a DAG?

When does a topological sort exist and when doesn’t it?

A topological sort can be found in O(V+E) time

Be able to find a topological sort yourself (by hand, don’t need to show
separate algorithm steps).

Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating.

Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332

Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the

ordering.

More generally, if the only incoming edges are from vertices already in the

ordering, it’s safe to add.

How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

What’s the running time?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

Running Time: 𝑂(𝑉 + 𝐸)

Finding a Topological Ordering

Instead of counting incoming edges, you can actually modify DFS to
find you one (think about why).

But the “count incoming edges” is a bit easier to understand (for me ☺)

What you need to know

What is a topological sort and a DAG?

When does a topological sort exist and when doesn’t it?

A topological sort can be found in O(V+E) time

Be able to find a topological sort yourself (by hand, don’t need to show
algorithm steps).

Connectivity in Directed Graphs

What you need to know

Definition of strongly connected

Strongly connected components can be found in O(V+E) time via
modification of DFS

Find SCCs of a graph (by hand, don’t need to show algorithm steps)

Problem 2: Find Strongly Connected
Components

D

C F

B EA K

J

A subgraph C such that every pair of vertices in C is connected

via some path in both directions, and there is no other vertex

which is connected to every vertex of C in both directions.

Strongly Connected Component

Problem 2: Find Strongly Connected
Components

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected

via some path in both directions, and there is no other vertex

which is connected to every vertex of C in both directions.

Strongly Connected Component

Connectedness Definitions

In an undirected graph, a connected component is a “piece” of the
graph: a vertex and everything its connected to via a path.

Equivalently, a subgraph C such that every pair of vertices in C is
connected via some path and there is no other vertex which is
connected to every vertex of C in both directions.

In a directed graph, you might care about

Weakly connected components (ignore the directions on the edges, if it
were undirected, would it be connected?)

Strongly connected (can you get in both directions)

Can you find Strongly Connected
Components?

A couple of different ways to use DFS to find strongly connected
components.

Wikipedia has the details.

High level: need to keep track of “highest point” in DFS tree you can
reach back up to.

What you need to know

Definition of strongly connected

Strongly connected components can be found in O(V+E) time via
modification of DFS

Find SCCs of a graph (by hand, don’t need to show algorithm steps)

Why P vs. NP matters

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs

in time 𝑶 𝒏𝒌 for some constant 𝑘.

P (stands for “Polynomial”)

Problem B is NP-complete if B is in NP and

for all problems A in NP, A reduces to B in polynomial time.

NP-complete

Problem B is NP-hard if

for all problems A in NP, A reduces to B in polynomial time.

NP-hard

Why is it called NP?

You’ve seen nondeterministic computation before.

Back in 311.

NFAs would “magically” decide among a set of valid transitions.

Always choosing one that would lead to an accept state (if such a

transition exists).

An NFA and a DFA for the language

“binary strings with a 1 in the 3rd position from the end.”

From Kevin & Paul’s 311 Lecture 23.

Nondeterminism

What would a nondeterministic computer look like?

It can run all the usual commands,

But it can also magically (i.e. nondeterministically) decide to set any bit
of memory to 0 or 1.

Always choosing 0 or 1 to cause the computer to output YES,

(if such a choice exists).

If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic
computer to:

Solve 2-COLOR?

Solve 3-COLOR?

If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic
computer to:

Solve 2-COLOR?

Just run our regular deterministic polynomial time algorithm

Or nondeterministically guess colors, output if they work.

Solve 3-COLOR?

nondeterministically guess colors, output if they work.

Analogue of NFA/DFA equivalence

You showed in 311 that the set of languages decided by NFAs and DFAs
were the same.

I.e. NFAs didn’t let you solve more problems than DFAs.

But it did sometimes make the process a lot easier.

There are languages such that the best DFA is exponentially larger than
the best NFA. (like the one from a few slides ago).

P vs. NP is an analogous question. Does non-determinism let us use
exponentially fewer resources to solve some problems?

History, and Why P vs. NP?

NP-Completeness

An NP-complete problem is a universal language for encoding “I’ll know
it when I see it” problems.

If you find an efficient algorithm for an NP-complete problem, you have
an algorithm for every problem in NP

SAT is NP-complete

Cook-Levin Theorem (1971)

NP-Complete Problems

But Wait! There’s more!

A lot of problems people

care about are NP-

complete

Karp’s Theorem (1972)

NP-Complete Problems

But Wait! There’s more!

 By 1979, at least 300 problems had been
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this
textbook.

Took them almost 100 pages to just list them
all.

No one has made a comprehensive list since.

NP-Complete Problems

But Wait! There’s more!

In the last month, mathematicians and computer scientists have put
papers on the arXiv claiming to show (at least) 10 more problems are
NP-complete.

If you spend enough time trying to use computers to solve your
problems, you will run into an NP-complete problem sooner or later.

What do you do?

Dealing with NP-Completeness

Option 1: Maybe it’s a special case we understand

Maybe you don’t need to solve the general problem, just a special case

-2-COLOR vs. 3-COLOR

Option 2: Maybe it’s a special case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be able to
get close.

Given a weighted graph, find a tour (a walk that visits every vertex

and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:

Find a minimum spanning tree.

Have the tour follow the visitation order of a DFS of the spanning tree.

Theorem: This tour is at most twice as long as the best one.

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award the Turing Award renamed after you.

Why Should You Care if P=NP?

Suppose P=NP.

Specifically that we found a genuinely in-practice efficient algorithm for
an NP-complete problem. What would you do?

-$1,000,000 from the Clay Math Institute obviously, but what’s next?

Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?

-Another $5,000,000 from the Clay Math Institute

-Put mathematicians out of work.

-Decrypt (essentially) all current internet communication.

-A world where P=NP is a very very different place from the world we
live in now.

Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?

P≠NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer

-Even though you’ll know it when you see it.

There is actually a way to obscure information.

Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between
problems.

-Why do some problems allow easy solutions and others don’t?

-What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about
what the world looks like.

We will learn a lot about computation along the way.

This is a good time for questions

Optional: Graph practice

Designing New Algorithms

When you need to design a new algorithm on graphs, whatever you do
is probably going to take at least Ω(𝑚 + 𝑛) time.

So you can run any 𝑂(𝑚 + 𝑛) algorithm as “preprocessing”

Finding connected components (undirected graphs)

Finding SCCs (directed graphs)

Do a topological sort (DAGs)

Designing New Algorithms

Finding SCCs and topological sort go well together:

From a graph 𝐺 you can define the “meta-graph” 𝐺𝑆𝐶𝐶

(aka “condensation”, aka “graph of SCCs”)

𝐺𝑆𝐶𝐶 has a vertex for every SCC of 𝐺

There’s an edge from 𝑢 to 𝑣 in 𝐺𝑆𝐶𝐶 if and only if there’s an edge in 𝐺
from a vertex in 𝑢 to a vertex in 𝑣.

Why Find SCCs?

Let’s build a new graph out of them! Call it 𝐺𝑆𝐶𝐶

-Have a vertex for each of the strongly connected components

-Add an edge from component 1 to component 2 if there is an edge
from a vertex inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

Designing New Graph Algorithms

Not a common task – most graph problems have been asked before.

When you need to do it, Robbie recommends:

Start with a simpler case (topo-sorted DAG, or [strongly] connected
graph).

A common pattern:

1. Figuring out what you’d do if the graph is strongly connected

2. Figuring out what you’d do if the graph is a topologically ordered
DAG

3. Stitching together those two ideas (using 𝐺𝑆𝐶𝐶).

Graph Modeling

But…Most of the time you don’t need a new graph algorithm.

What you need is to figure out what graph to make and which graph
algorithm to run.

“Graph modeling”

Going from word problem to graph algorithm.

Often finding a clever way to turn your requirements into graph
features.

Mix of “standard bag of tricks” and new creativity.

Graph Modeling Process

1. What are your fundamental objects?

-Those will probably become your vertices.

2. How are those objects related?

-Represent those relationships with edges.

3. How is what I’m looking for encoded in the graph?

-Do I need a path from s to t? The shortest path from s to t? A
minimum spanning tree? Something else?

4. Do I know how to find what I’m looking for?

-Then run that algorithm/combination of algorithms

-Otherwise go back to step 1 and try again.

Scenario #1

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

Scenario #1
You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Users

Directed – from 𝑢 to 𝑣 if

𝑢 follows 𝑣

If everyone in the channel is

in the same SCC.

Find SCCs, to test a new channel,

make sure all are in same component.

Scenario #2

Sports fans often use the “transitive law” to
predict sports outcomes.
In general, if you think A is better than B, and
B is also better than C, then you expect that
A is better than C.

Teams don’t all play each other – from data
of games that have been played, determine if
the “transitive law” is realistic, or misleading
about at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Scenario #2

Sports fans often use the “transitive law” to
predict sports outcomes -- .
In general, if you think A is better than B, and
B is also better than C, then you expect that
A is better than C.

Teams don’t all play each other – from data
of games that have been played, determine if
the “transitive law” is realistic, or misleading
about at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Teams

Directed – Edge from

𝑢 to 𝑣 if 𝑢 beat 𝑣.

A cycle would say it’s not realistic.

OR a topological sort would say it is.

Cycle-detection DFS.

a topological sort algorithm (with

error detection)

Scenario #3
You are at Splash Mountain. Your best friend is at
Space Mountain. You have to tell each other about
your experiences in person as soon as possible.
Where do you meet and how quickly can you get
there?

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Scenario #3
You are at Splash Mountain. Your best friend is at
Space Mountain. You have to tell each other about
your experiences in person as soon as possible.
Where do you meet and how quickly can you get
there?

What are the vertices?
Rides

What are the edges?
Walkways with how long it would take to walk

What are we looking for?
- The “midpoint”

What do we run?
- Run Dijkstra’s from Splash Mountain, store distances

- Run Dijkstra’s from Space Mountain, store distances

- Iterate over vertices, for each vertex remember max of two

- Iterate over vertices, find minimum of remembered numbers

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

0

15

14

29

33

32

19

17

20 37

36

1

36

29

22

19 15

9

17

31

28

0

Scenario #4

58

You’re a Disneyland employee, working the front of the Splash Mountain line. Suddenly,
the crowd-control gates fall over and the line degrades into an unordered mass of people.

Sometimes you can tell who was in line before who; for other groups you aren’t quite sure.
You need to restore the line, while ensuring if you knew A came before B before the
incident, they will still be in the right order afterward.

What are the vertices?
People

What are the edges?
Edges are directed, have an edge from X to Y if you know X came before Y.

What are we looking for?
- A total ordering consistent with all the ordering we do know.

What do we run?
- Topological Sort!

	Slide 1: Wrap-Up Hodgepodge
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Two More Simple Graph Algorithms
	Slide 5: What you need to know
	Slide 6: Ordering Dependencies
	Slide 7: Ordering Dependencies
	Slide 8: Topological Ordering
	Slide 9: Can we always order a graph?
	Slide 10: Ordering a DAG
	Slide 11: Ordering a DAG
	Slide 12: How Do We Find a Topological Ordering?
	Slide 13: What’s the running time?
	Slide 14: Finding a Topological Ordering
	Slide 15: What you need to know
	Slide 16: Connectivity in Directed Graphs
	Slide 17: What you need to know
	Slide 18: Problem 2: Find Strongly Connected Components
	Slide 19: Problem 2: Find Strongly Connected Components
	Slide 20: Connectedness Definitions
	Slide 21: Can you find Strongly Connected Components?
	Slide 22: What you need to know
	Slide 23: Why P vs. NP matters
	Slide 24
	Slide 25: Why is it called NP?
	Slide 26
	Slide 27: Nondeterminism
	Slide 28: If we had a nondeterministic computer…
	Slide 29: If we had a nondeterministic computer…
	Slide 30: Analogue of NFA/DFA equivalence
	Slide 31: History, and Why P vs. NP?
	Slide 32: NP-Completeness
	Slide 33: NP-Complete Problems
	Slide 34: NP-Complete Problems
	Slide 35: NP-Complete Problems
	Slide 36: Dealing with NP-Completeness
	Slide 37: Dealing with NP-Completeness
	Slide 38: Why should you care about P vs. NP
	Slide 39: Why should you care about P vs. NP
	Slide 40: Why Should You Care if P=NP?
	Slide 41: Why Should You Care if P=NP?
	Slide 42: Why Should You Care if Pnot equalNP?
	Slide 43: Why Should You Care if Pnot equalNP?
	Slide 44: This is a good time for questions
	Slide 45: Optional: Graph practice
	Slide 46: Designing New Algorithms
	Slide 47: Designing New Algorithms
	Slide 48: Why Find SCCs?
	Slide 49: Designing New Graph Algorithms
	Slide 50: Graph Modeling
	Slide 51: Graph Modeling Process
	Slide 52: Scenario #1
	Slide 53: Scenario #1
	Slide 54: Scenario #2
	Slide 55: Scenario #2
	Slide 56: Scenario #3
	Slide 57: Scenario #3
	Slide 58: Scenario #4

