
6/3/2025

1

Reductions Redux
When we reduced 𝐴 to 𝐵 before, it was because we had an algorithm for 𝐵
already, and wanted to solve 𝐴.
We knew how to handle unweighted graphs, now we want to see if we can 
handle weighted.
In complexity theory (where we’re trying to show algorithms don’t exist) we 
reduce well-studied 𝐴 to new problem 𝐵.
Goal is a proof by contradiction.

1. Suppose (for sake of contradiction) new problem 𝐵 has a nice algorithm.
2. But then we can use that for an algorithm well-studied problem 𝐴.
3. But, uh, no one knows an algorithm for well-studied problem 𝐴.
4. “contradiction”

What The World Looks Like (We Think)

PP
Short Paths, 

Light 
Spanning Tree, 

2-COLOR

NP-Complete

NP-hard
Halting Problem
nxn chess 

3-COLOR, TSP
Long PathNP

41

48



6/3/2025

2

The set of all decision problems such that if the answer is YES, 
there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs 
in time 𝑶 𝒏𝒌 for some constant 𝑘.

P (stands for “Polynomial”)

Problem B is NP-complete if B is in NP and 
for all problems A in NP, A reduces to B in polynomial time. 

NP-complete

Problem B is NP-hard if
for all problems A in NP, A reduces to B in polynomial time. 

NP-hard

Reductions

If A reduces to B then A should be “easier” than B. (for us as algorithm 
designers) (thus 𝐴 ≤௉ 𝐵)

We say A reduces to B in polynomial time, if there is an algorithm 
that, using a (hypothetical) polynomial-time algorithm for B, 
solves problem A in polynomial-time.
Written 𝐴 ≤௉ 𝐵

Polynomial Time Reducible

The set of all decision problems that have an algorithm that runs 
in time 𝑶 𝟐𝒏^𝒌 for some constant 𝑘.

EXP (stands for “Exponential”)

71

72


