
P and NP CSE 332 25Sp

Lecture 26,27

Announcements

Last call for conflict exam requests (will process them tomorrow)

Monday Tuesday Wed Thursday Friday

This

Week
Ex 14 (P/NP,

GS) out

TODAY

Ex 13 (MST,prog)

due

Ex 14 due

Next

Week
Final!

(12:30-2:20)

Kruskal’s Algorithm: Running Time

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(u and v are in different components){

 add (u,v) to the MST

 Update u and v to be in the same component

 }

 }

Kruskal’s Algorithm: Running Time

How do we find connected components? Well BFS is our existing tool to
do that, but…

Running a new BFS in the partial MST, at every step seems inefficient.
The answer changes little by little, so we’ll recompute work frequently.

Do we have an ADT that will work here?

Union-Find Crash Course

aka Disjoint Sets

Represents…well…disjoint sets.

Union-Find ADT

makeSet(x) – creates a new set where the only

member (and the representative) is x.

state

behavior

Set of Sets

- Disjoint: No element appears in multiple sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing

element x, returns name of that set

union(x, y) – combines sets containing x

and y. Picks new name for combined set.

Union-Find Running Time

What’s important for us?

Amortized running times! We care about the total time across the entire
set of unions and finds, not the running time of just one.

Uses “forest of up-trees” implementation.

Operation Worst-case

Amortized

Worst-case

Non-amortized

MakeSet() Θ(1) Θ(1)

Union() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

Find() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

log∗ 𝑛

log∗ 𝑛

the number of times you need to apply log() to get a number at most 1.

E.g., log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly.

log∗ 1080 = 5.

For all practical purposes these operations are constant time.
They’re not constants (don’t delete them from big-O notation), but you
will never worry about these in figuring out how many seconds a piece
of code takes.

Using Union-Find

Have each disjoint set represent a connected component

-A connected component is a “piece” of a (disconnected) undirected
graph

-i.e. a vertex, and everything you can reach from that vertex.

When you add an edge, you union those connected components.

Try it Out

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(find(u) != find(v)){

 add (u,v) to the MST

 union(find(u),find(v)) }

 }
A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Operation Worst-case

Amortized

MakeSet() Θ(1)

Union() 𝑂(log∗ 𝑛)

Find() 𝑂(log∗ 𝑛)

Running Time?

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(find(u) != find(v)){

 add (u,v) to the MST

 union(find(u),find(v)) }

 }
A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

𝐸 log 𝐸

𝐸 log∗ 𝑉

𝑉

𝑉 log∗ 𝑉

𝐸 log 𝐸 is the dominant term, but

you’ll usually see this written

Θ(𝐸 log 𝑉)
Since 𝐸 ≤ 𝑉2, those are equivalent.

Operation Worst-case

Amortized

MakeSet() Θ(1)

Union() 𝑂(log∗ 𝑛)

Find() 𝑂(log∗ 𝑛)

Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

(A,B) Yes

(C,D) Yes

(B,F) Yes

(A,C) Yes

(C,E) Yes

(B,E) No Cycle A,C,D,B,A

(A,D) No Cycle A,D,C

(D,E) No Cycle C,D,E

(D,F) No Cycle A,B,F,D,C,A

(E,F) No Cycle E,F,B,A,C,E

(B,G) Yes

Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka

-He had a different also greedy algorithm for MSTs.

-Boruvka’s algorithm is trickier to implement, but is useful in some
cases.

-In particular it’s the basis for fast parallel MST algorithms.

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees.
Prim’s/Kruskal’s are only guaranteed to find you one of them.

Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds.

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph

EVERY TREE IS A FOREST.

P vs. NP

Taking a Big Step Back

What has this quarter been about?

We’ve taken problems you probably knew how to solve slowly,

And we figured out how to solve them faster.

You could have written a linked-list-dictionary. Would have been 𝑂(𝑛)
not 𝑂(log 𝑛) for most operations, but it would’ve worked (eventually).

In some sense, that’s the job of a computer scientist.

Figure out how to take our problems

And make the computer do the hard work for us.

Taking a Big Step Back

Let’s take a big step back, and try to break problems into two types:

Those for which a computer might be able to help.

And those which would take so long to solve even on a computer we
wouldn’t expect to solve them.

This is not the same as asking for undecideable problems (like the
Halting Problem you saw in 311).

There are problems we could solve in finite time…but we’ll all be long
dead before our computer tells us the answer.

Running Times

(somewhat old) table from Rosen. How big of a problem can we solve

for an algorithm with the given running times.

“very long” means more than 1025 years.

Efficient

We’ll consider a problem “efficiently solvable” if it has a polynomial time
algorithm.

I.e. an algorithm that runs in time 𝑂(𝑛𝑘) where 𝑘 is a constant.

Are these algorithms always actually efficient?

Well………no

Your 𝑛10000 algorithm or even your 22222

⋅ 𝑛3 algorithm probably aren’t
going to finish anytime soon.

But these edge cases are rare, and polynomial time is good as a low bar

-If we can’t even find an 𝑛10000 algorithm, we’re probably not getting
one that is efficient in practice anyway.

Definition Dump

Some definitions

A problem is a set of inputs and the correct outputs.

“Find a Minimum Spanning Tree” is a problem.

-Input is a graph, output is the MST.

-“Tell whether a list is sorted” is a problem.

-Input is an array, output is “yes” or “no”

-“Sort this array” is a problem.

-Input is an array, output is the same numbers, now in sorted order.

Some definitions

An instance is a single input to a problem.

A single, particular graph is an instance of the MST problem

-A single, particular graph with vertices s and t is an instance of the
Shortest Path problem.

-A single, particular array is an instance of the “is the array sorted?”
problem.

13 24 31 30 35 39 51 Not Sorted

Decision Problems

Let’s go back to dividing problems into solvable/not solvable.
For today, we’re going to talk about decision problems.

Problems that have a “yes” or “no” answer.

Why?

Theory reasons (ask me later).

But also most problems can be rephrased as very similar decision
problems.

E.g. instead of “find the shortest path from s to t” ask
Is there a path from s to t of length at most 𝑘?

P

The set of all decision problems that have an algorithm that runs

in time 𝑂 𝑛𝑘 for some constant 𝑘.

P (stands for “Polynomial”)

The decision version of all problems we’ve solved in this class are in P.

P is an example of a “complexity class”

A set of problems that can be solved under some limitations (e.g. with

some amount of memory or in some amount of time).

Remember the decision part! It’s important

Formally, question is whether

algorithm exists, not whether

it’s known to humanity.

I’ll know it when I see it.

Another class of problems we want to talk about.

“I’ll know it when I see it” Problems.

Decision Problems such that:

If the answer is YES, you can prove the answer is yes by
-Being given a “proof” or a “certificate”

-Verifying that certificate in polynomial time.

What certificate would be convenient for short paths?

-The path itself. Easy to check the path is really in the graph and really
short.

I’ll know it when I see it.

More formally,

Intuitively: you can show me why the answer is yes, and I can verify it.

3-COLOR is an NP problem

“Is there a Spanning Tree of cost at most 25?” is an NP problem

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

I’ll know it when I see it.

More formally,

Intuitively: you can show me why the answer is yes, and I can verify it.

3-COLOR is an NP problem

Give me the coloring (u is red, v is blue,…) and check each edge.

“Is there a spanning tree of cost at most 25?” is an NP problem

Give me the tree, I’ll see if it’s a spanning tree (run BFS, every vertex
visited, no cycles, etc.); and see if the weight is small enough.

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

I’ll know it when I see it.

More formally,

It’s a common misconception that NP stands for “not polynomial”
Please never ever ever ever say that.

Please.

Every time you do a theoretical computer scientist sheds a single tear.

(That theoretical computer scientist is me)

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

NP

We can verify YES instances of NP problems efficiently, but can we
decide whether the answer is YES or NO efficiently?

That is, can we do it without the hint?

I.e. can you bootstrap the ability to check a certificate into the ability to
find a certificate efficiently?

We don’t know.

This is the P vs. NP problem.

P vs. NP

Claim: P ⊆ NP (do you see why?)

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs

in time 𝑶 𝒏𝒌 for some constant 𝑘.

P (stands for “Polynomial”)

P vs. NP

Some problems in NP we know how to solve in polynomial time (solve
from scratch, not just verify)

“Is there a spanning tree of cost at most 25?” can be solved with Prim’s.
-It’s in P.

Other problems we don’t know how to solve in polynomial time.

We don’t know whether 3-COLOR is in P (most people don’t think it is).

But maybe it is, and we just don’t know the algorithm.

P vs. NP asks this question in general: does knowing you can verify a
solution guarantee that you can find a solution?

EXP

There is an algorithm to solve 3-COLOR, it’s just slow

Think of a correct (just inefficient) algorithm to solve 3-COLOR

Generate all 3^n possible colorings, if one of them works, great! Return
true.

If none of them work, return false.

This algorithm takes exponential time

EXP

3-COLOR is in EXP (we just saw why on the last slide)

So is

Claim: NP ⊆ EXP (do you see why?)

The set of all decision problems that have an algorithm that runs

in time 𝑶 𝟐𝒏^𝒌 for some constant 𝑘.

EXP (stands for “Exponential”)

Reductions

Let’s say we want to prove that some problem in NP needs exponential time
(i.e. that P is not equal to NP).

Ideally we’d start with a really hard problem in NP.

What does it mean for one problem to be harder than another?

I could solve problem A efficiently, if you give me a library that solves problem
B efficiently

We say A reduces to B in polynomial time, if there is an algorithm

that, using a (hypothetical) polynomial-time algorithm for B,

solves problem A in polynomial-time.

Polynomial Time Reducible

Reductions

If A reduces to B then A should be “easier” than B. (for us as algorithm
designers)

-If we can solve B, we can definitely solve A.

Usually denoted A ≤𝑃B.

We say A reduces to B in polynomial time, if there is an algorithm

that, using a (hypothetical) polynomial-time algorithm for B,

solves problem A in polynomial-time.

Polynomial Time Reducible

The Direction Matters!

Direction matters, and is often confusing:
𝐴 ≤ 𝐵 “A reduces to B”

I wrote an algorithm to solve problem A using a library designed to
solve problem B

“A is no harder than B” (solving B guarantees you can solve A, but
maybe there’s a different way to solve A)

How do you remember the direction?
Robbie recommends you repeat “Reduction from A to B means writing
an algorithm for problem A using an algorithm designed for problem B”
to yourself 50 times until it’s stuck in your brain.

We reduced shortest paths on (integer-weighted) graphs to
shortest paths on unweighted graphs

s

u

v

t2

2

2

1

1

s

u

v

t

s

u

v
t 2

s

u

v
t2

2

2

1

1

2

Transform Input

Unweighted Shortest Paths

Transform Output

NP-complete

Let’s say we want to prove that some problem in NP needs exponential
time (i.e. that P is not equal to NP).

Ideally we’d start with a really hard problem in NP.

What is the hardest problem in NP?

A problem B is NP-complete if B is in NP and

for all problems A in NP, A reduces to B in polynomial time.

NP-complete

NP-complete

An NP-complete problem is a hardest problem in NP.

Seems like the right place to start for proving P≠NP.

It’s also the right place to start for proving P=NP.

A polynomial time algorithm for one NP-complete problem, gives you a
polynomial time algorithm for every problem in NP.

Reductions Redux

When we reduced 𝐴 to 𝐵 before, it was because we had an algorithm for 𝐵
already, and wanted to solve 𝐴.

We knew how to handle unweighted graphs, now we want to see if we can
handle weighted.

In complexity theory (where we’re trying to show algorithms don’t exist) we
reduce well-studied 𝐴 to new problem 𝐵.

Goal is a proof by contradiction.

1. Suppose (for sake of contradiction) new problem 𝐵 has a nice algorithm.

2. But then we can use that for an algorithm well-studied problem 𝐴.

3. But, uh, no one knows an algorithm for well-studied problem 𝐴.

4. “contradiction”

Reductions Redux

To show problem B is NP-hard

Reduce from A, a known NP-hard problem, to B.

From the known-hard problem to your new problem—must be that
direction!

How do you remember the direction?
Robbie recommends you memorize “reduce from known problem to
new problem” by repeating it to yourself 50 times.

Alternatively reconstruct that proof by contradiction from the last slide
to see which direction is needed.

Examples

Given a directed graph,

report if there is a path from

s to t of length at most 𝑘.

Short Path

Given a directed graph,

report if there is a path from

s to t of length at least 𝑘.

Long Path

In P NP-Complete

There are literally thousands of NP-complete problems.

And some of them look weirdly similar to problems we do know

efficient algorithms for.

Examples

Given a weighted graph, is

there a spanning tree (a set

of edges that connect all

vertices) of weight at most 𝑘.

Light Spanning Tree

Given a weighted graph, is

there a tour (a walk that visits

every vertex and returns to its

start) of weight at most 𝑘.

Traveling Salesperson

The electric company just needs a greedy algorithm to lay its wires.

Amazon doesn’t know a way to optimally route its delivery trucks.

In P NP-Complete

Examples

Given a graph, decide if you

can color the vertices red and

blue so every edge has

different colored endpoints

2-Coloring

Given a graph, decide if you

can color the vertices red,

blue, and green so every

edge has different colored

endpoints.

3-Coloring

2-Coloring can be done with a modification of BFS (or DFS). Color the

start vertex red, its neighbors must be blue, their neighbors red, etc.

No one knows how to tell if a graph is 3-colorable efficiently.

In P NP-Complete

NP-hard

One more class:

Problem B is NP-hard if

for all problems A in NP, A reduces to B in polynomial time.

NP-hard

An NP-hard problem need not be in NP.

Examples?

Find the “best possible” certificate for an NP-hard problem.

 Instead of a path of length at least 𝑘, find the longest path.

 Instead of a tour of weight at most 𝑘, find the shortest tour.

NP-hard

Problem B is NP-complete if

for all problems A in NP, A reduces to B in polynomial time.

NP-hard

Other Examples:

The halting problem is NP-hard (but not NP-complete).

So is n x n chess.

Given an n x n chessboard, can white force a win with perfect

play?

n x n Chess

What The World Looks Like (We Think)

PP

Short Paths,

Light

Spanning Tree,

2-COLOR

NP-Complete

NP-hard

Halting Problem

nxn chess

3-COLOR, TSP

Long PathNP

What The World Looks Like (If P=NP)

PP

Short Paths, Light

Spanning Tree, 2-SAT

TSP, 3-SAT, Long Paths

Still hard:

nxn chess

Still impossible:

Halting Problem

Why P vs. NP matters

The set of all decision problems such that if the answer is YES,

there is a proof of that which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

The set of all decision problems that have an algorithm that runs

in time 𝑶 𝒏𝒌 for some constant 𝑘.

P (stands for “Polynomial”)

Problem B is NP-complete if B is in NP and

for all problems A in NP, A reduces to B in polynomial time.

NP-complete

Problem B is NP-hard if

for all problems A in NP, A reduces to B in polynomial time.

NP-hard

Why is it called NP?

You’ve seen nondeterministic computation before.

Back in 311.

NFAs would “magically” decide among a set of valid transitions.

Always choosing one that would lead to an accept state (if such a

transition exists).

An NFA and a DFA for the language

“binary strings with a 1 in the 3rd position from the end.”

From Kevin & Paul’s 311 Lecture 23.

Nondeterminism

What would a nondeterministic computer look like?

It can run all the usual commands,

But it can also magically (i.e. nondeterministically) decide to set any bit
of memory to 0 or 1.

Always choosing 0 or 1 to cause the computer to output YES,

(if such a choice exists).

If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic
computer to:

Solve 2-COLOR?

Solve 3-COLOR?

If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic
computer to:

Solve 2-COLOR?

Just run our regular deterministic polynomial time algorithm

Or nondeterministically guess colors, output if they work.

Solve 3-COLOR?

nondeterministically guess colors, output if they work.

Analogue of NFA/DFA equivalence

You showed in 311 that the set of languages decided by NFAs and DFAs
were the same.

I.e. NFAs didn’t let you solve more problems than DFAs.

But it did sometimes make the process a lot easier.

There are languages such that the best DFA is exponentially larger than
the best NFA. (like the one from a few slides ago).

P vs. NP is an analogous question. Does non-determinism let us use
exponentially fewer resources to solve some problems?

History, and Why P vs. NP?

NP-Completeness

An NP-complete problem is a universal language for encoding “I’ll know
it when I see it” problems.

If you find an efficient algorithm for an NP-complete problem, you have
an algorithm for every problem in NP

SAT is NP-complete

Cook-Levin Theorem (1971)

NP-Complete Problems

But Wait! There’s more!

A lot of problems people

care about are NP-

complete

Karp’s Theorem (1972)

NP-Complete Problems

But Wait! There’s more!

 By 1979, at least 300 problems had been
proven NP-complete.

Garey and Johnson put a list of all the NP-
complete problems they could find in this
textbook.

Took them almost 100 pages to just list them
all.

No one has made a comprehensive list since.

NP-Complete Problems

But Wait! There’s more!

In the last month, mathematicians and computer scientists have put
papers on the arXiv claiming to show (at least) 10 more problems are
NP-complete.

If you spend enough time trying to use computers to solve your
problems, you will run into an NP-complete problem sooner or later.

What do you do?

Dealing with NP-Completeness

Option 1: Maybe it’s a special case we understand

Maybe you don’t need to solve the general problem, just a special case

-2-COLOR vs. 3-COLOR

Option 2: Maybe it’s a special case we don’t understand (yet)

There are algorithms that are known to run quickly on “nice” instances.
Maybe your problem has one of those.

One approach: Turn your problem into a SAT instance, find a solver and
cross your fingers.

Dealing with NP-Completeness

Option 3: Approximation Algorithms

You might not be able to get an exact answer, but you might be able to
get close.

Given a weighted graph, find a tour (a walk that visits every vertex

and returns to its start) of minimum weight.

Optimization version of Traveling Salesperson

Algorithm:

Find a minimum spanning tree.

Have the tour follow the visitation order of a DFS of the spanning tree.

Theorem: This tour is at most twice as long as the best one.

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award

Why should you care about P vs. NP

Most computer scientists are convinced that P≠NP.

Why should you care about this problem?

It’s your chance for:

$1,000,000. The Clay Mathematics Institute will give $1,000,000 to
whoever solves P vs. NP (or any of the 5 remaining problems they listed)

To get a Turing Award the Turing Award renamed after you.

Why Should You Care if P=NP?

Suppose P=NP.

Specifically that we found a genuinely in-practice efficient algorithm for
an NP-complete problem. What would you do?

-$1,000,000 from the Clay Math Institute obviously, but what’s next?

Why Should You Care if P=NP?

We found a genuinely in-practice efficient algorithm for an NP-
complete problem. What would you do?

-Another $5,000,000 from the Clay Math Institute

-Put mathematicians out of work.

-Decrypt (essentially) all current internet communication.

-A world where P=NP is a very very different place from the world we
live in now.

Why Should You Care if P≠NP?

We already expect P≠NP. Why should you care when we finally prove it?

P≠NP says something fundamental about the universe.

For some questions there is not a clever way to find the right answer

-Even though you’ll know it when you see it.

There is actually a way to obscure information.

Why Should You Care if P≠NP?

To prove P≠NP we need to better understand the differences between
problems.

-Why do some problems allow easy solutions and others don’t?

-What is the structure of these problems?

We don’t care about P vs NP just because it has a huge effect about
what the world looks like.

We will learn a lot about computation along the way.

	Slide 1: P and NP
	Slide 2: Announcements
	Slide 3: Kruskal’s Algorithm: Running Time
	Slide 4: Kruskal’s Algorithm: Running Time
	Slide 5: Union-Find Crash Course
	Slide 6: Union-Find Running Time
	Slide 7: log to the asterisk operator of n
	Slide 8: Using Union-Find
	Slide 9: Try it Out
	Slide 10: Running Time?
	Slide 11: Try it Out
	Slide 12: Try it Out
	Slide 13: Some Extra Comments
	Slide 14: Aside: A Graph of Trees
	Slide 15
	Slide 16: P vs. NP
	Slide 17: Taking a Big Step Back
	Slide 18: Taking a Big Step Back
	Slide 19: Running Times
	Slide 20: Efficient
	Slide 21: Definition Dump
	Slide 22: Some definitions
	Slide 23: Some definitions
	Slide 24: Decision Problems
	Slide 25: P
	Slide 26: I’ll know it when I see it.
	Slide 27: I’ll know it when I see it.
	Slide 28: I’ll know it when I see it.
	Slide 29: I’ll know it when I see it.
	Slide 30: NP
	Slide 31: P vs. NP
	Slide 32: P vs. NP
	Slide 33: EXP
	Slide 34: EXP
	Slide 35: Reductions
	Slide 36: Reductions
	Slide 37: The Direction Matters!
	Slide 38: We reduced shortest paths on (integer-weighted) graphs to shortest paths on unweighted graphs
	Slide 39: NP-complete
	Slide 40: NP-complete
	Slide 41: Reductions Redux
	Slide 42: Reductions Redux
	Slide 43: Examples
	Slide 44: Examples
	Slide 45: Examples
	Slide 46: NP-hard
	Slide 47: NP-hard
	Slide 48: What The World Looks Like (We Think)
	Slide 49: What The World Looks Like (If P=NP)
	Slide 50: Why P vs. NP matters
	Slide 51
	Slide 52: Why is it called NP?
	Slide 53
	Slide 54: Nondeterminism
	Slide 55: If we had a nondeterministic computer…
	Slide 56: If we had a nondeterministic computer…
	Slide 57: Analogue of NFA/DFA equivalence
	Slide 58: History, and Why P vs. NP?
	Slide 59: NP-Completeness
	Slide 60: NP-Complete Problems
	Slide 61: NP-Complete Problems
	Slide 62: NP-Complete Problems
	Slide 63: Dealing with NP-Completeness
	Slide 64: Dealing with NP-Completeness
	Slide 65: Why should you care about P vs. NP
	Slide 66: Why should you care about P vs. NP
	Slide 67: Why Should You Care if P=NP?
	Slide 68: Why Should You Care if P=NP?
	Slide 69: Why Should You Care if Pnot equalNP?
	Slide 70: Why Should You Care if Pnot equalNP?

