
Minimum Spanning Trees CSE 332 Sp25

Lecture 25

Announcements

Final Exam information page is up.

If you are requesting a conflict exam, please fill out form today!

Monday Tuesday Wed Thursday Friday

This

Week
Veteran’s

Day

Ex 11 (prefix

prog)due

Ex 13 (MST,prog)

out

TODAY

Ex 12 (concurrency,

GS) due

final conflict form due

Next

Week
Ex 14 (P/NP,

GS) out

Ex 13 due Ex 14 due

https://courses.cs.washington.edu/courses/cse332/25sp/exams/final.html

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose
where to build wires to connect all these cities to the plant.

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any

pair of locations, and wants the cheapest way to make sure electricity

from the plant to every city.

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose
where to build wires to connect all these cities to the plant.

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any

pair of locations, and wants the cheapest way to make sure

electricity from the plant to every city.

1950’s

phones to each other.

phone

Everyone can call everyone else.

boss phone

Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose
where to build wires to connect all these cities to the plant.

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any

pair of locations, and wants the cheapest way to make sure

today ISP

cable

Everyone can reach the server

the Internet.

Minimum Spanning Trees

What do we need? A set of edges such that:

-Every vertex touches at least one of the edges. (the edges span the
graph)

-The graph on just those edges is connected.

-i.e. the edges are all in the same connected component.

-A connected component is a vertex and everything you can reach
from it.

-The minimum weight set of edges that meet those conditions

Claim: The set of edges we pick never has a cycle. Why?

Aside: Trees

On graphs our tees:

-Don’t need a root (the vertices aren’t ordered, and we can start BFS
from anywhere)

-Varying numbers of children neighbors

-Connected and no cycles

An undirected, connected acyclic graph.

Tree (when talking about undirected graphs)

MST Problem

What do we need? A set of edges such that:
-Every vertex touches at least one of the edges. (the edges span the graph)

-The graph on just those edges is connected.

-The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem.

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you can get

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem

Example

Try to find an MST of this graph:

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7

Prim’s Algorithm

Algorithm idea: choose an arbitrary starting point. Add a new edge that:

-Will let you reach more vertices.

-Is as light as possible

We’d like each not-yet-connected vertex to be able to tell us the lightest
edge we could add to connect it.

Code
PrimMST(Graph G)

 initialize costs to ∞

 mark source as cost 0

 mark all vertices unprocessed

 foreach(edge (source, v)) {

 v.cost = weight(source,v) }

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex

 add u.bestEdge to spanning tree

 foreach(edge (u,v) leaving u){

 if(weight(u,v) < v.cost){

 v.cost = weight(u,v)

 v.bestEdge = (u,v)

 }

 }

 mark u as processed

 }

 }

Try it Out

Vertex Cost Best Edge Processed

A

B

C

D

E

F

G

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2
PrimMST(Graph G)

 initialize costs to ∞

 mark source as cost 0

 mark all vertices unprocessed

 foreach(edge (source, v)) {

 v.cost = weight(source,v) }

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex

 add u.bestEdge to spanning tree

 foreach(edge (u,v) leaving u){

 if(weight(u,v) < v.cost){

 v.cost = weight(u,v)

 v.bestEdge = (u,v)

 }

 }

 mark u as processed

 }

 }

Vertex Cost Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2
Try it OutPrimMST(Graph G)

 initialize costs to ∞

 mark source as cost 0

 mark all vertices unprocessed

 foreach(edge (source, v)) {

 v.cost = weight(source,v) }

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex

 add u.bestEdge to spanning tree

 foreach(edge (u,v) leaving u){

 if(weight(u,v) < v.cost){

 v.cost = weight(u,v)

 v.bestEdge = (u,v)

 }

 }

 mark u as processed

 }

 }

PrimMST(Graph G)

 initialize costs to ∞

 mark source as cost 0

 mark all vertices unprocessed //and add to priority queue

 foreach(edge (source, v)) {

 v.cost = weight(source,v) }

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex //removeMin

 add u.bestEdge to spanning tree

 foreach(edge (u,v) leaving u){

 if(weight(u,v) < v.cost){

 v.cost = weight(u,v) //updatePriority!!

 v.bestEdge = (u,v)

 }

 }

 mark u as processed

 }

}

Running time: Θ(𝐸 log 𝑉)
Analysis same as Dijkstra, but

can assume 𝐸 ≥ 𝑉 − 1

Some Exercise Notes

We’ll ask you to implement Prim’s in Exercise 13.

You have a few options for the priority queue:

1. Use a Java library priority queue---but it doesn’t have updatePriority()
so you’ll need a workaround:
A. Add edges instead of vertices to the priority queue OR
B. Allow multiple copies of each vertex into the queue (instead of
decreasing priority, put in a second copy at the new priority OR

2. Use your (Exercise 2) priority queue instead---call updatePriority!

Will these change the running time? No! log 𝐸 = Θ log 𝑉 for simple
graphs.

Read the paragraph in the spec about this before you get too far. Also
see alternate version of pseudocode in section slides tomorrow.

Does This Algorithm Always Work?

Prim’s Algorithm is a greedy algorithm. Once it decides to include an
edge in the MST it never reconsiders its decision.

Greedy algorithms rarely work.

There are special properties of MSTs that allow greedy algorithms to
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm
that works.

Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an
MST.

Cut Property: Split the vertices of the graph any way you want into two
sets A and B. The lightest edge with one endpoint in A and the other in
B is ALWAYS part of an MST.

Whenever you add an edge to a tree you create exactly one cycle, you
can then remove any edge from that cycle and get another tree out.

This observation, combined with the cycle and cut properties form the
basis of all of the greedy algorithms for MSTs.

Does This Algorithm Always Work?

Prim’s Algorithm is a greedy algorithm. Once it decides to include an
edge in the MST it never reconsiders its decision.

Greedy algorithms rarely work.

There are special properties of MSTs that allow greedy algorithms to
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm
that works.

A different Approach

Prim’s Algorithm started from a single vertex and reached more and
more other vertices.

Prim’s thinks vertex by vertex (add the closest vertex to the currently
reachable set).

What if you think edge by edge instead?

Start from the lightest edge; add it if it connects new things to each
other (don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.

Kruskal’s Algorithm

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight (increasing)

 foreach(edge (u, v) in sorted order){

 if(u and v are in different components){

 add (u,v) to the MST

 Update u and v to be in the same component

 }

 }

Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(u and v are in different components){

 add (u,v) to the MST

 Update u and v to be in the same component

 }

 }
Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)

Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(u and v are in different components){

 add (u,v) to the MST

 Update u and v to be in the same component

 }

 }
Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C

Kruskal’s Algorithm: Running Time

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(u and v are in different components){

 add (u,v) to the MST

 Update u and v to be in the same component

 }

 }

Kruskal’s Algorithm: Running Time

How do we find connected components? Well BFS is our existing tool to
do that, but…

Running a new BFS in the partial MST, at every step seems inefficient.
The answer changes little by little, so we’ll recompute work frequently.

Do we have an ADT that will work here?

Union-Find Crash Course

aka Disjoint Sets

Represents…well…disjoint sets.

Union-Find ADT

makeSet(x) – creates a new set where the only

member (and the representative) is x.

state

behavior

Set of Sets

- Disjoint: No element appears in multiple sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing

element x, returns name of that set

union(x, y) – combines sets containing x

and y. Picks new name for combined set.

Union-Find Running Time

What’s important for us?

Amortized running times! We care about the total time across the entire
set of unions and finds, not the running time of just one.

Uses “forest of up-trees” implementation.

Operation Worst-case

Amortized

Worst-case

Non-amortized

MakeSet() Θ(1) Θ(1)

Union() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

Find() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

log∗ 𝑛

log∗ 𝑛

the number of times you need to apply log() to get a number at most 1.

E.g., log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly.

log∗ 1080 = 5.

For all practical purposes these operations are constant time.
They’re not constants (don’t delete them from big-O notation), but you
will never worry about these in figuring out how many seconds a piece
of code takes.

Using Union-Find

Have each disjoint set represent a connected component

-A connected component is a “piece” of a (disconnected) undirected
graph

-i.e. a vertex, and everything you can reach from that vertex.

When you add an edge, you union those connected components.

Try it Out

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(find(u) != find(v)){

 add (u,v) to the MST

 union(find(u),find(v)) }

 }
A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Running Time?

KruskalMST(Graph G)

 initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

 if(find(u) != find(v)){

 add (u,v) to the MST

 union(find(u),find(v)) }

 }
A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

𝐸 log 𝐸

𝐸 log∗ 𝑉

𝐸

𝐸 log∗ 𝑉

𝐸 log 𝐸 is the dominant term, but

you’ll usually see this written

Θ(𝐸 log 𝑉)
Since 𝐸 ≤ 𝑉2, those are equivalent.

Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

Try it Out

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

Edge Include? Reason

(A,B) Yes

(C,D) Yes

(B,F) Yes

(A,C) Yes

(C,E) Yes

(B,E) No Cycle A,C,D,B,A

(A,D) No Cycle A,D,C

(D,E) No Cycle C,D,E

(D,F) No Cycle A,B,F,D,C,A

(E,F) No Cycle E,F,B,A,C,E

(B,G) Yes

Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka

-He had a different also greedy algorithm for MSTs.

-Boruvka’s algorithm is trickier to implement, but is useful in some
cases.

-In particular it’s the basis for fast parallel MST algorithms.

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees.
Prim’s/Kruskal’s are only guaranteed to find you one of them.

Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds.

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph

EVERY TREE IS A FOREST.

Two More Simple Graph
Algorithms

Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating.

Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332

Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the

ordering.

More generally, if the only incoming edges are from vertices already in the

ordering, it’s safe to add.

How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

What’s the running time?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

Running Time: 𝑂(𝑉 + 𝐸)

Finding a Topological Ordering

Instead of counting incoming edges, you can actually modify DFS to
find you one (think about why).

But the “count incoming edges” is a bit easier to understand (for me ☺)

Problem 2: Find Strongly Connected
Components

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected

via some path in both directions, and there is no other vertex

which is connected to every vertex of C in both directions.

Strongly Connected Component

Connectedness Definitions

In an undirected graph, a connected component is a “piece” of the
graph: a vertex and everything its connected to via a path.

Equivalently, a subgraph C such that every pair of vertices in C is
connected via some path and there is no other vertex which is
connected to every vertex of C in both directions.

In a directed graph, you might care about

Weakly connected components (ignore the directions on the edges, if it
were undirected, would it be connected?)

Strongly connected (can you get in both directions)

Can you find Strongly Connected
Components?

A couple of different ways to use DFS to find strongly connected
components.

Wikipedia has the details.

High level: need to keep track of “highest point” in DFS tree you can
reach back up to. Similar idea on undirected graphs on HW2.

What do you need to know?
On a small graph, find the SCC by hand

Know that you can modify DFS to find SCCs in Θ 𝑉 + 𝐸 time.

Optional: Graph practice

Designing New Algorithms

When you need to design a new algorithm on graphs, whatever you do
is probably going to take at least Ω(𝑚 + 𝑛) time.

So you can run any 𝑂(𝑚 + 𝑛) algorithm as “preprocessing”

Finding connected components (undirected graphs)

Finding SCCs (directed graphs)

Do a topological sort (DAGs)

Designing New Algorithms

Finding SCCs and topological sort go well together:

From a graph 𝐺 you can define the “meta-graph” 𝐺𝑆𝐶𝐶

(aka “condensation”, aka “graph of SCCs”)

𝐺𝑆𝐶𝐶 has a vertex for every SCC of 𝐺

There’s an edge from 𝑢 to 𝑣 in 𝐺𝑆𝐶𝐶 if and only if there’s an edge in 𝐺
from a vertex in 𝑢 to a vertex in 𝑣.

Why Find SCCs?

Let’s build a new graph out of them! Call it 𝐺𝑆𝐶𝐶

-Have a vertex for each of the strongly connected components

-Add an edge from component 1 to component 2 if there is an edge
from a vertex inside 1 to one inside 2.

D

C F

B EA K

J

1

3 4

2

Designing New Graph Algorithms

Not a common task – most graph problems have been asked before.

When you need to do it, Robbie recommends:

Start with a simpler case (topo-sorted DAG, or [strongly] connected
graph).

A common pattern:

1. Figuring out what you’d do if the graph is strongly connected

2. Figuring out what you’d do if the graph is a topologically ordered
DAG

3. Stitching together those two ideas (using 𝐺𝑆𝐶𝐶).

Graph Modeling

But…Most of the time you don’t need a new graph algorithm.

What you need is to figure out what graph to make and which graph
algorithm to run.

“Graph modeling”

Going from word problem to graph algorithm.

Often finding a clever way to turn your requirements into graph
features.

Mix of “standard bag of tricks” and new creativity.

Graph Modeling Process

1. What are your fundamental objects?

-Those will probably become your vertices.

2. How are those objects related?

-Represent those relationships with edges.

3. How is what I’m looking for encoded in the graph?

-Do I need a path from s to t? The shortest path from s to t? A
minimum spanning tree? Something else?

4. Do I know how to find what I’m looking for?

-Then run that algorithm/combination of algorithms

-Otherwise go back to step 1 and try again.

Scenario #1

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

Scenario #1
You’ve made a new social networking app,
Convrs. Users on Convrs can have “asymmetric”
following (I can follow you, without you following
me). You decide to allow people to form multi-
user direct messages, but only if people are
probably in similar social circles (to avoid
spamming).

You’ll allow a messaging channel to form only if
for every pair of users a,b in the channel: a must
follow b or follow someone who follows b or
follow someone who follows someone who
follows b, or …
And the same for b to a.

You’d like to be able to quickly check for any new
proposed channel whether it meets this
condition.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Users

Directed – from 𝑢 to 𝑣 if

𝑢 follows 𝑣

If everyone in the channel is

in the same SCC.

Find SCCs, to test a new channel,

make sure all are in same component.

Scenario #2

Sports fans often use the “transitive law” to
predict sports outcomes.
In general, if you think A is better than B, and
B is also better than C, then you expect that
A is better than C.

Teams don’t all play each other – from data
of games that have been played, determine if
the “transitive law” is realistic, or misleading
about at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Scenario #2

Sports fans often use the “transitive law” to
predict sports outcomes -- .
In general, if you think A is better than B, and
B is also better than C, then you expect that
A is better than C.

Teams don’t all play each other – from data
of games that have been played, determine if
the “transitive law” is realistic, or misleading
about at least one outcome.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Teams

Directed – Edge from

𝑢 to 𝑣 if 𝑢 beat 𝑣.

A cycle would say it’s not realistic.

OR a topological sort would say it is.

Cycle-detection DFS.

a topological sort algorithm (with

error detection)

Scenario #3
You are at Splash Mountain. Your best friend is at
Space Mountain. You have to tell each other about
your experiences in person as soon as possible.
Where do you meet and how quickly can you get
there?

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

Scenario #3
You are at Splash Mountain. Your best friend is at
Space Mountain. You have to tell each other about
your experiences in person as soon as possible.
Where do you meet and how quickly can you get
there?

What are the vertices?
Rides

What are the edges?
Walkways with how long it would take to walk

What are we looking for?
- The “midpoint”

What do we run?
- Run Dijkstra’s from Splash Mountain, store distances

- Run Dijkstra’s from Space Mountain, store distances

- Iterate over vertices, for each vertex remember max of two

- Iterate over vertices, find minimum of remembered numbers

Castle

Flag

Pole

Dumbo

It’s a

small

world

Matter-

horn

Space

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3

4

5

6 7

8

9

10

11

5

17

13

1210

1

9

6

4

16

7

8

3

2

15

14

0

15

14

29

33

32

19

17

20 37

36

1

36

29

22

19 15

9

17

31

28

0

Scenario #4

62

You’re a Disneyland employee, working the front of the Splash Mountain line. Suddenly,
the crowd-control gates fall over and the line degrades into an unordered mass of people.

Sometimes you can tell who was in line before who; for other groups you aren’t quite sure.
You need to restore the line, while ensuring if you knew A came before B before the
incident, they will still be in the right order afterward.

What are the vertices?
People

What are the edges?
Edges are directed, have an edge from X to Y if you know X came before Y.

What are we looking for?
- A total ordering consistent with all the ordering we do know.

What do we run?
- Topological Sort!

	Slide 1: Minimum Spanning Trees
	Slide 2: Announcements
	Slide 3: Minimum Spanning Trees
	Slide 4: Minimum Spanning Trees
	Slide 5: Minimum Spanning Trees
	Slide 6: Minimum Spanning Trees
	Slide 7: Aside: Trees
	Slide 8: MST Problem
	Slide 9: Example
	Slide 10: Prim’s Algorithm
	Slide 11: Code
	Slide 12: Try it Out
	Slide 13
	Slide 14
	Slide 15: Some Exercise Notes
	Slide 16: Does This Algorithm Always Work?
	Slide 17: Why do all of these MST Algorithms Work?
	Slide 18: Does This Algorithm Always Work?
	Slide 19: A different Approach
	Slide 20: Kruskal’s Algorithm
	Slide 21: Try It Out
	Slide 22: Try It Out
	Slide 23: Kruskal’s Algorithm: Running Time
	Slide 24: Kruskal’s Algorithm: Running Time
	Slide 25: Union-Find Crash Course
	Slide 26: Union-Find Running Time
	Slide 27: log to the asterisk operator of n
	Slide 28: Using Union-Find
	Slide 29: Try it Out
	Slide 30: Running Time?
	Slide 31: Try it Out
	Slide 32: Try it Out
	Slide 33: Some Extra Comments
	Slide 34: Aside: A Graph of Trees
	Slide 35
	Slide 36: Two More Simple Graph Algorithms
	Slide 37: Ordering Dependencies
	Slide 38: Ordering Dependencies
	Slide 39: Topological Ordering
	Slide 40: Can we always order a graph?
	Slide 41: Ordering a DAG
	Slide 42: Ordering a DAG
	Slide 43: How Do We Find a Topological Ordering?
	Slide 44: What’s the running time?
	Slide 45: Finding a Topological Ordering
	Slide 46: Problem 2: Find Strongly Connected Components
	Slide 47: Connectedness Definitions
	Slide 48: Can you find Strongly Connected Components?
	Slide 49: Optional: Graph practice
	Slide 50: Designing New Algorithms
	Slide 51: Designing New Algorithms
	Slide 52: Why Find SCCs?
	Slide 53: Designing New Graph Algorithms
	Slide 54: Graph Modeling
	Slide 55: Graph Modeling Process
	Slide 56: Scenario #1
	Slide 57: Scenario #1
	Slide 58: Scenario #2
	Slide 59: Scenario #2
	Slide 60: Scenario #3
	Slide 61: Scenario #3
	Slide 62: Scenario #4

