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Lecture 25



Announcements

Final Exam information page is up.

If you are requesting a conflict exam, please fill out form today! 

Monday Tuesday Wed Thursday Friday

This 

Week
Veteran’s 

Day

Ex 11 (prefix 

prog)due

Ex 13 (MST,prog) 

out

TODAY

Ex 12 (concurrency, 

GS) due

final conflict form due

Next 

Week
Ex 14 (P/NP, 

GS) out

Ex 13 due Ex 14 due

https://courses.cs.washington.edu/courses/cse332/25sp/exams/final.html


Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure electricity 

from the plant to every city.
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phones to each other.

phone

Everyone can call everyone else.

boss phone



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 
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She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure

today ISP

cable

Everyone can reach the server

the Internet.



Minimum Spanning Trees

What do we need? A set of edges such that:

-Every vertex touches at least one of the edges. (the edges span the 
graph)

-The graph on just those edges is connected.

-i.e. the edges are all in the same connected component.

-A connected component is a vertex and everything you can reach 
from it.

-The minimum weight set of edges that meet those conditions

Claim: The set of edges we pick never has a cycle. Why?



Aside: Trees 

On graphs our tees:

-Don’t need a root (the vertices aren’t ordered, and we can start BFS 
from anywhere)

-Varying numbers of children neighbors

-Connected and no cycles 

An undirected, connected acyclic graph.

Tree (when talking about undirected graphs)



MST Problem

What do we need? A set of edges such that:
-Every vertex touches at least one of the edges. (the edges span the graph)

-The graph on just those edges is connected.

-The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem.

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you can get 

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem



Example

Try to find an MST of this graph:
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Prim’s Algorithm

Algorithm idea: choose an arbitrary starting point. Add a new edge that:

-Will let you reach more vertices.

-Is as light as possible

We’d like each not-yet-connected vertex to be able to tell us the lightest 
edge we could add to connect it. 



Code
PrimMST(Graph G) 

   initialize costs to ∞

   mark source as cost 0

   mark all vertices unprocessed

   foreach(edge (source, v) ) {

      v.cost = weight(source,v) }

   while(there are unprocessed vertices){

      let u be the closest unprocessed vertex

    add u.bestEdge to spanning tree

    foreach(edge (u,v) leaving u){

       if(weight(u,v) < v.cost){

      v.cost = weight(u,v)

   v.bestEdge = (u,v)

     }

    }

      mark u as processed

    }

 }



Try it Out

Vertex Cost Best Edge Processed
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PrimMST(Graph G) 

   initialize costs to ∞

   mark source as cost 0

   mark all vertices unprocessed

   foreach(edge (source, v) ) {

      v.cost = weight(source,v) }

   while(there are unprocessed vertices){

    let u be the closest unprocessed vertex

    add u.bestEdge to spanning tree

    foreach(edge (u,v) leaving u){

     if(weight(u,v) < v.cost){

            v.cost = weight(u,v)

          v.bestEdge = (u,v)

         }

     }

      mark u as processed

   }

 }



Vertex Cost Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes
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Try it OutPrimMST(Graph G) 

   initialize costs to ∞

   mark source as cost 0

   mark all vertices unprocessed

   foreach(edge (source, v) ) {

      v.cost = weight(source,v) }

   while(there are unprocessed vertices){

       let u be the closest unprocessed vertex

     add u.bestEdge to spanning tree

     foreach(edge (u,v) leaving u){

        if(weight(u,v) < v.cost){

            v.cost = weight(u,v)

          v.bestEdge = (u,v)

          }

     }

       mark u as processed

   }

  }



PrimMST(Graph G) 

   initialize costs to ∞

   mark source as cost 0

   mark all vertices unprocessed //and add to priority queue

   foreach(edge (source, v) ) {

      v.cost = weight(source,v) }

   while(there are unprocessed vertices){

      let u be the closest unprocessed vertex //removeMin

    add u.bestEdge to spanning tree

    foreach(edge (u,v) leaving u){

        if(weight(u,v) < v.cost){

            v.cost = weight(u,v) //updatePriority!!

          v.bestEdge = (u,v)

          }

    }

      mark u as processed

   }

}

Running time: Θ(𝐸 log 𝑉)
Analysis same as Dijkstra, but 

can assume 𝐸 ≥ 𝑉 − 1



Some Exercise Notes

We’ll ask you to implement Prim’s in Exercise 13.

You have a few options for the priority queue:

1. Use a Java library priority queue---but it doesn’t have updatePriority() 
so you’ll need a workaround: 
A. Add edges instead of vertices to the priority queue OR
B. Allow multiple copies of each vertex into the queue (instead of 
decreasing priority, put in a second copy at the new priority OR

2. Use your (Exercise 2) priority queue instead---call updatePriority!

Will these change the running time? No! log 𝐸 = Θ log 𝑉  for simple 
graphs.

Read the paragraph in the spec about this before you get too far. Also 
see alternate version of pseudocode in section slides tomorrow.



Does This Algorithm Always Work? 

Prim’s Algorithm is a greedy algorithm. Once it decides to include an 
edge in the MST it never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to 
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm 
that works.



Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an 
MST.

Cut Property: Split the vertices of the graph any way you want into two 
sets A and B. The lightest edge with one endpoint in A and the other in 
B is ALWAYS part of an MST. 

Whenever you add an edge to a tree you create exactly one cycle, you 
can then remove any edge from that cycle and get another tree out. 

This observation, combined with the cycle and cut properties form the 
basis of all of the greedy algorithms for MSTs.



Does This Algorithm Always Work? 

Prim’s Algorithm is a greedy algorithm. Once it decides to include an 
edge in the MST it never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to 
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm 
that works.



A different Approach 

Prim’s Algorithm started from a single vertex and reached more and 
more other vertices.

Prim’s thinks vertex by vertex (add the closest vertex to the currently 
reachable set).

What if you think edge by edge instead?

Start from the lightest edge; add it if it connects new things to each 
other (don’t add it if it would create a cycle)

This is Kruskal’s Algorithm.



Kruskal’s Algorithm

KruskalMST(Graph G) 

  initialize each vertex to be a connected component

 sort the edges by weight (increasing)

 foreach(edge (u, v) in sorted order){

  if(u and v are in different components){

   add (u,v) to the MST

   Update u and v to be in the same component

  }

 }



Try It Out
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KruskalMST(Graph G) 

   initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

  if(u and v are in different components){

   add (u,v) to the MST

   Update u and v to be in the same component

  }

 }
Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)



Try It Out
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KruskalMST(Graph G) 

   initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

  if(u and v are in different components){

   add (u,v) to the MST

   Update u and v to be in the same component

  }

 }
Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C



Kruskal’s Algorithm: Running Time

KruskalMST(Graph G) 

   initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

  if(u and v are in different components){

   add (u,v) to the MST

   Update u and v to be in the same component

  }

 }



Kruskal’s Algorithm: Running Time

How do we find connected components? Well BFS is our existing tool to 
do that, but…

Running a new BFS in the partial MST, at every step seems inefficient. 
The answer changes little by little, so we’ll recompute work frequently.

Do we have an ADT that will work here?



Union-Find Crash Course

aka Disjoint Sets

Represents…well…disjoint sets.

Union-Find ADT

makeSet(x) – creates a new set where the only 

member (and the representative) is x.

state

behavior

Set of Sets

- Disjoint: No element appears in multiple sets

- No required order

- Each set has representative

findSet(x) – looks up the set containing 

element x, returns name of that set

union(x, y) – combines sets containing x 

and y. Picks new name for combined set.



Union-Find Running Time

What’s important for us? 

Amortized running times! We care about the total time across the entire 
set of unions and finds, not the running time of just one.

Uses “forest of up-trees” implementation. 

Operation Worst-case 

Amortized

Worst-case 

Non-amortized

MakeSet() Θ(1) Θ(1)

Union() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)

Find() 𝑂(log∗ 𝑛) 𝑂(log 𝑛)



log∗ 𝑛

log∗ 𝑛

the number of times you need to apply log() to get a number at most 1. 

E.g., log∗(16) = 3

log 16 = 4 log 4 = 2 log 2 = 1.

log∗ 𝑛 grows ridiculously slowly. 

log∗ 1080  = 5.

For all practical purposes these operations are constant time.
They’re not constants (don’t delete them from big-O notation), but you 
will never worry about these in figuring out how many seconds a piece 
of code takes.



Using Union-Find

Have each disjoint set represent a connected component 

-A connected component is a “piece” of a (disconnected) undirected 
graph

-i.e. a vertex, and everything you can reach from that vertex.

When you add an edge, you union those connected components.



Try it Out

KruskalMST(Graph G) 

  initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

  if(find(u) != find(v)){

   add (u,v) to the MST

   union(find(u),find(v))  }

 }
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Running Time?

KruskalMST(Graph G) 

  initialize each vertex to be a connected component

 sort the edges by weight

 foreach(edge (u, v) in sorted order){

  if(find(u) != find(v)){

   add (u,v) to the MST

   union(find(u),find(v))  }

 }
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𝐸 log 𝐸

𝐸 log∗ 𝑉

𝐸

𝐸 log∗ 𝑉

𝐸 log 𝐸 is the dominant term, but 

you’ll usually see this written

Θ(𝐸 log 𝑉)
Since 𝐸 ≤ 𝑉2, those are equivalent.



Try it Out
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Try it Out
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Edge Include? Reason

(A,B) Yes

(C,D) Yes

(B,F) Yes

(A,C) Yes

(C,E) Yes

(B,E) No Cycle A,C,D,B,A

(A,D) No Cycle A,D,C

(D,E) No Cycle C,D,E

(D,F) No Cycle A,B,F,D,C,A

(E,F) No Cycle E,F,B,A,C,E

(B,G) Yes



Some Extra Comments

Prim was the employee at Bell Labs in the 1950’s

The mathematician in the 1920’s was Boruvka

-He had a different also greedy algorithm for MSTs.

-Boruvka’s algorithm is trickier to implement, but is useful in some 
cases.

-In particular it’s the basis for fast parallel MST algorithms.

If all the edge weights are distinct, then the MST is unique.

If some edge weights are equal, there may be multiple spanning trees. 
Prim’s/Kruskal’s are only guaranteed to find you one of them.



Aside: A Graph of Trees

A tree is an undirected, connected, and acyclic graph.

How would we describe the graph Kruskal’s builds. 

It’s not a tree until the end.

It’s a forest!

A forest is any undirected and acyclic graph 



EVERY TREE IS A FOREST.



Two More Simple Graph 
Algorithms



Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find 
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332



Ordering Dependencies 

Given a directed graph G, where we have an edge from u to v if u must 
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right. 

Topological Sort (aka Topological Ordering)

Uses: 

Compiling multiple files

Graduating.



Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332



Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?



Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D



Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the 

ordering.

More generally, if the only incoming edges are from vertices already in the 

ordering, it’s safe to add. 



How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source) 

   count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

  if(v.edgesRemaining == 0)

   toProcess.insert(v)

   }

 topOrder = new List() 

 while(toProcess is not empty){

    u = toProcess.remove()

  topOrder.insert(u)

  foreach(edge (u,v) leaving u){

   v.edgesRemaining--

   if(v.edgesRemaining == 0)

    toProcess.insert(v)

  }

 }



What’s the running time?

TopologicalSort(Graph G, Vertex source) 

   count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

  if(v.edgesRemaining == 0)

   toProcess.insert(v)

   }

 topOrder = new List() 

 while(toProcess is not empty){

    u = toProcess.remove()

  topOrder.insert(u)

  foreach(edge (u,v) leaving u){

   v.edgesRemaining--

   if(v.edgesRemaining == 0)

    toProcess.insert(v)

  }

 }

Running Time: 𝑂( 𝑉 + 𝐸 )



Finding a Topological Ordering 

Instead of counting incoming edges, you can actually modify DFS to 
find you one (think about why).

But the “count incoming edges” is a bit easier to understand (for me ☺ )



Problem 2: Find Strongly Connected 
Components

D

C F

B EA K

J

{A}, {B}, {C,D,E,F}, {J,K}

A subgraph C such that every pair of vertices in C is connected 

via some path in both directions, and there is no other vertex 

which is connected to every vertex of C in both directions.

Strongly Connected Component



Connectedness Definitions

In an undirected graph, a connected component is a “piece” of the 
graph: a vertex and everything its connected to via a path.

Equivalently, a subgraph C such that every pair of vertices in C is 
connected via some path and there is no other vertex which is 
connected to every vertex of C in both directions.

In a directed graph, you might care about

Weakly connected components (ignore the directions on the edges, if it 
were undirected, would it be connected?)

Strongly connected (can you get in both directions)



Can you find Strongly Connected 
Components?

A couple of different ways to use DFS to find strongly connected 
components. 

Wikipedia has the details. 

High level: need to keep track of “highest point” in DFS tree you can 
reach back up to. Similar idea on undirected graphs on HW2. 

What do you need to know?
On a small graph, find the SCC by hand

Know that you can modify DFS to find SCCs in Θ 𝑉 + 𝐸  time.



Optional: Graph practice



Designing New Algorithms

When you need to design a new algorithm on graphs, whatever you do 
is probably going to take at least Ω(𝑚 + 𝑛) time. 

So you can run any 𝑂(𝑚 + 𝑛) algorithm as “preprocessing”

Finding connected components (undirected graphs)

Finding SCCs (directed graphs)

Do a topological sort (DAGs)



Designing New Algorithms

Finding SCCs and topological sort go well together:

From a graph 𝐺 you can define the “meta-graph” 𝐺𝑆𝐶𝐶

(aka “condensation”, aka “graph of SCCs”)

𝐺𝑆𝐶𝐶 has a vertex for every SCC of 𝐺

There’s an edge from 𝑢 to 𝑣 in 𝐺𝑆𝐶𝐶  if and only if there’s an edge in 𝐺 
from a vertex in 𝑢 to a vertex in 𝑣.



Why Find SCCs?

Let’s build a new graph out of them! Call it 𝐺𝑆𝐶𝐶 

-Have a vertex for each of the strongly connected components

-Add an edge from component 1 to component 2 if there is an edge 
from a vertex inside 1 to one inside 2.
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Designing New Graph Algorithms

Not a common task – most graph problems have been asked before.

When you need to do it, Robbie recommends:

Start with a simpler case (topo-sorted DAG, or [strongly] connected 
graph).

A common pattern:

1. Figuring out what you’d do if the graph is strongly connected

2. Figuring out what you’d do if the graph is a topologically ordered 
DAG

3. Stitching together those two ideas (using 𝐺𝑆𝐶𝐶). 



Graph Modeling

But…Most of the time you don’t need a new graph algorithm.

What you need is to figure out what graph to make and which graph 
algorithm to run.

“Graph modeling”

Going from word problem to graph algorithm. 

Often finding a clever way to turn your requirements into graph 
features. 

Mix of “standard bag of tricks” and new creativity.



Graph Modeling Process

1. What are your fundamental objects?

-Those will probably become your vertices.

2. How are those objects related?

-Represent those relationships with edges.

3. How is what I’m looking for encoded in the graph?

-Do I need a path from s to t? The shortest path from s to t? A 
minimum spanning tree? Something else?

4. Do I know how to find what I’m looking for?

-Then run that algorithm/combination of algorithms

-Otherwise go back to step 1 and try again.



Scenario #1

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

You’ve made a new social networking app, 
Convrs. Users on Convrs can have “asymmetric” 
following (I can follow you, without you following 
me). You decide to allow people to form multi-
user direct messages, but only if people are 
probably in similar social circles (to avoid 
spamming).

You’ll allow a messaging channel to form only if 
for every pair of users a,b in the channel: a must 
follow b or follow someone who follows b or 
follow someone who follows someone who 
follows b, or …
And the same for b to a. 

You’d like to be able to quickly check for any new 
proposed channel whether it meets this 
condition.



Scenario #1
You’ve made a new social networking app, 
Convrs. Users on Convrs can have “asymmetric” 
following (I can follow you, without you following 
me). You decide to allow people to form multi-
user direct messages, but only if people are 
probably in similar social circles (to avoid 
spamming).

You’ll allow a messaging channel to form only if 
for every pair of users a,b in the channel: a must 
follow b or follow someone who follows b or 
follow someone who follows someone who 
follows b, or …
And the same for b to a. 

You’d like to be able to quickly check for any new 
proposed channel whether it meets this 
condition.

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Users

Directed – from 𝑢 to 𝑣 if 

𝑢 follows 𝑣

If everyone in the channel is 

in the same SCC.

Find SCCs, to test a new channel, 

make sure all are in same component.



Scenario #2

Sports fans often use the “transitive law” to 
predict sports outcomes. 
In general, if you think A is better than B, and 
B is also better than C, then you expect that 
A is better than C.

Teams don’t all play each other – from data 
of games that have been played, determine if 
the “transitive law” is realistic, or misleading 
about at least one outcome.  

What are the vertices?

What are the edges?

What are we looking for?

What do we run?



Scenario #2

Sports fans often use the “transitive law” to 
predict sports outcomes -- . 
In general, if you think A is better than B, and 
B is also better than C, then you expect that 
A is better than C.

Teams don’t all play each other – from data 
of games that have been played, determine if 
the “transitive law” is realistic, or misleading 
about at least one outcome.  

What are the vertices?

What are the edges?

What are we looking for?

What do we run?

Teams

Directed – Edge from 

𝑢 to 𝑣 if 𝑢 beat 𝑣.

A cycle would say it’s not realistic.

OR a topological sort would say it is.

Cycle-detection DFS.

a topological sort algorithm (with 

error detection)



Scenario #3
You are at Splash Mountain. Your best friend is at 
Space Mountain. You have to tell each other about 
your experiences in person as soon as possible. 
Where do you meet and how quickly can you get 
there?

What are the vertices? 

What are the edges? 
 

What are we looking for?

What do we run?

Castle

Flag 

Pole

Dumbo

It’s a 

small 

world

Matter-

horn

Space 

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn
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Scenario #3
You are at Splash Mountain. Your best friend is at 
Space Mountain. You have to tell each other about 
your experiences in person as soon as possible. 
Where do you meet and how quickly can you get 
there?

What are the vertices? 
Rides

What are the edges? 
Walkways with how long it would take to walk

What are we looking for?
- The “midpoint” 

What do we run?
- Run Dijkstra’s from Splash Mountain, store distances

- Run Dijkstra’s from Space Mountain, store distances

- Iterate over vertices, for each vertex remember max of two

- Iterate over vertices, find minimum of remembered numbers

Castle

Flag 

Pole

Dumbo

It’s a 

small 

world

Matter-

horn

Space 

Mtn

Star

Tours

Jungle

Cruise

Indiana

Jones

Splash

Mtn

Thunder

Mtn

0

1

2

3
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6 7

8
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Scenario #4
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You’re a Disneyland employee, working the front of the Splash Mountain line. Suddenly, 
the crowd-control gates fall over and the line degrades into an unordered mass of people.

Sometimes you can tell who was in line before who; for other groups you aren’t quite sure. 
You need to restore the line, while ensuring if you knew A came before B before the 
incident, they will still be in the right order afterward.

What are the vertices? 
People

What are the edges? 
Edges are directed, have an edge from X to Y if you know X came before Y.

What are we looking for?
- A total ordering consistent with all the ordering we do know.

What do we run?
- Topological Sort!
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