
Wrap Concurrency
Minimum Spanning Trees

CSE 332 Sp25

Lecture 24



Announcements

Final Exam information page is up.

If you are requesting a conflict exam, please do so by Friday. 

Monday Tuesday Wed Thursday Friday

This 

Week
Veteran’s 

Day

Ex 11 (prefix 

prog)due

TODAY

Ex 13 (MST,prog) 

out

Ex 12 (concurrency, 

GS) due

final conflict form due

Next 

Week
Ex 14 (P/NP, 

GS) out

Ex 13 due Ex 14 due

https://courses.cs.washington.edu/courses/cse332/25sp/exams/final.html


Warm-Up
class BankAccount{

private int balance = 0;

private Lock lk = new Lock(); 

private Lock lk2 = new Lock();

void withdraw(int amount){

  lk.acquire(); //might block

  int b = getBalance();

  if(amount > b) { 

    lk.release();

   throw new 

WithdrawTooLargeException();

  setBalance(b – amount);

  lk.release();

}

void deposit(int amount){

   lk2.acquire();

  int b = getBalance();

  setBalance(b + amount);

  lk2.release();

}

We said last time bank account should 

have 1 lock per object, not 1 lock per 

method that updates the balance.

Show a bad interleaving when we have 

a lock for each method.



Warm-up

void withdraw(int amount){

  lk.acquire(); //might block

  int b = getBalance();

  if(amount > b) { 

    lk.release();

   throw new …

  setBalance(b – amount);

  lk.release();

}

void deposit(int amount){

    lk2.acquire();

  int b = getBalance();

  setBalance(b + amount);

  lk2.release();

}

1 4

2

3

5

6

7

8

9

This interleaving erases the deposit.
If there were only one lock (just lk not 

lk2), this interleaving isn’t possible!



Some Java Notes



Real Java locks

A re-entrant lock is available in:

java.util.concurrent.locks.ReentrantLock

Methods are lock() and unlock()



synchronized

Java has built-in support for reentrant locks with the keyword 
synchronized

synchronized (expression) {

//Critical section here

}

-Expression must evaluate to an Object.

-Every object “is a lock” in java

-Lock is acquired at the opening brace and released at the matching 
closing brace. (Java handles instantiating the lock, remembering 
which one is which, etc.)

-Released even if control leaves due to throw/return/etc.



synchronized

If your whole method is a critical section

And the object you want for your lock is this

You can change the method header to include synchronized.

E.g. private synchronized void getBalance()

Equivalent of having 

synchronized(this){ } around entire method body.



Deadlock



Multiple Locks

What happens when you need to acquire more than one lock? What 
new thing could go wrong with this code? 

void transferTo(int amt, BankAccount a){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}



Multiple Locks

THREAD 1, FROM ACCT1 TO ACCT2

void transferTo(…){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}

THREAD 2, FROM ACCT2 TO ACCT1

void transferTo(…){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}

1 2

blocks blocks

UH-OH!

Thread 1 needs Thread 2 to let go, but 

Thread 2 needs Thread 1 to let go



Deadlock

Deadlock occurs when we have a cycle of dependencies

i.e. we have threads 𝑇1, … , 𝑇𝑛 such that 

thread 𝑇𝑖 is waiting for a resource held by 𝑇𝑖+1 and 

𝑇𝑛 is waiting for a resource held by 𝑇1.

How can we set up our program so this doesn’t happen?



Deadlock Solutions

Option 1: Smaller critical section:
-Acquire bank account 1’s lock, withdraw, release that lock

-Acquire bank account 2’s lock, deposit, release that lock

Maybe ok here, but exposes wrong total amount in bank while blocking.

Option 2: Coarsen the lock granularity
-One lock for all accounts.

-Probably too coarse for good behavior

Option 3: All methods acquiring multiple locks acquire them in the 
same order.
-E.g. in order of account number.

More options – take Operating Systems!



Conventional Wisdom



Conventional Wisdom

There are three types of memory

Thread local (each thread has its own copy)

Immutable (no thread overwrites that memory location)

Shared and mutable

-Synchronization needed to control access.

Whenever possible make memory of type 1 or 2.

If you can minimize/eliminate side-effects in your code, you can make 
more memory type 2.



Conventional Wisdom

Consistent locking:

Every location that reads or writes a shared resource has a lock.

Even if you can’t think of a bad interleaving, better safe than sorry.

When deciding how big to make a critical section:

Start coarse grained (i.e., start with a very large critical section), and 
move finer if you really need to improve performance.



Conventional Wisdom

Avoid expensive computations or I/O in critical sections. 

If possible release the lock, do the long computation, and reacquire the 
lock.

Just make sure you haven’t introduced a race condition.

Think in terms of what operations need to be atomic.

i.e. consider atomicity first, then think about where the locks go.



Conventional Wisdom

Don’t write your own.

There’s probably a library that does what you need.

Use it.

There are “thread-safe” libraries like ConcurrentHashMap.

No need to do it yourself when experts already did it 

-and probably did it better.



Data Race



A distinction

A Race Condition is an error in parallel code –the output depends on the 
order of execution of the threads (who wins the race to be executed).

We’ll divide into two types

A data race is an error where at (potentially) the same time:

1. Two threads are writing the same variable. 

2. One thread writes to a variable while another is reading it. 

A Bad interleaving

Is when incorrect behavior (as defined by the user) could result from a 
particular sequential execution order.
(We don’t consider deadlock a race condition, but a separate kind of 
concurrency bug)



Huh?

Consider this code…

class Stack<E>{

  private E[] array = (E[])new Object[SIZE];

  private int index = -1;

  synchronized public Boolean isEmpty() { return index==-1;}

  synchronized public void push(E val) {array[++index]=val;}

  synchronized public E pop() {

    if(isEmpty()) { throw new StackEmptyException(); }

    return array[index--];

  }

  public E peek() { E ans = pop(); push(ans); return ans; }

}



What’s the problem?

That peek is, uh, interesting..

Certainly would work as sequential code (albeit probably bad style).

But with multiple threads…?

Well, there aren’t any data races. The calls to push and pop are 
synchronized. We only ever have one thread touching any data (the 
underlying array or index variable) at a time.

But it certainly isn’t correct! Peek has an intermediate state that (if 
exposed during a bad interleaving) leads to incorrect behavior.



Bad Interleaving 1

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PUSH + ISEMPTY)

push(x);

boolean b = isEmpty();

12

34

5

Logical expectation: If we push (and haven’t popped) then the stack is 

not empty.

This is a bad interleaving, without a data race.



Bad Interleaving 2

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES)

push(x);

 push(y);

Logical expectation: Pushed values go in LIFO order



Bad Interleaving 2

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES)

push(x);

 push(y);

12

34

5

Logical expectation: Pushed values go in LIFO order

This is a bad interleaving, without a data race.

Notice, this interleaving would be fine if we just had a generic list!



Bad Interleaving 3

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES, POP)

push(x);

 push(y);

 E e = pop();

Logical expectation: Popped values come in LIFO order



Bad Interleaving 3

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES, POP)

push(x);

 push(y);

 E e = pop();

13

25

6

Logical expectation: Popped values come in LIFO order

4



Bad Interleaving 4

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PEEK)

E ans = pop();

push(ans);

return ans;

Logical expectation: Peek on a non-empty heap does not throw an 

exception



Bad Interleaving 4

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PEEK)

E ans = pop();

push(ans);

return ans;

12

53

4

Logical expectation: Peek on a non-empty queue does not throw an 

exception

6



The Fix: Don’t allow interleaving!

Peek needs synchronization 

Enlarge the critical section to be the whole method. 

Ensures no one is even looking at the stack until we push back the 
element we popped. 



The Fix

Problem so far: peek does writes, creating an intermediate state.
The right fix: Make isEmpty and peek synchronized.

It’s tempting to try to fix the code like this (This is the wrong fix!):

peek , if “normally” implemented (or isEmpty) doesn’t actually write 
anything. Maybe we can skip the synchronization on those?

Do NOT remove the synchronization from peek/isEmpty. You will create a 
data race!

isEmpty reads the same data push writes (e.g., the index variable). That 
is definitionally a data race



We Can’t Keep Getting Away With It

It might look like isEmpty or peek not being synchronized won’t lead 
to errors. 

After all, that push is just one line! I can’t figure out how to make bad 
interleavings.

Don’t think just because you can’t figure out a bad interleaving that a 
data race won’t be a problem.

1. “single steps” aren’t always single steps.

2. A data race is an error by definition. The compiler does a lot of 
optimizations (including reordering sequential code) assuming you 
don’t have data races. If you have them, your code may execute wrong. 
And good luck figuring that bug out..(see Grossman 7.2)



Summary

Two kinds of race conditions:

Data race (a thread potentially reads while another writes, or two 
potentially write simultaneously)

Bad Interleaving: exposes intermediate state to other threads, leads to 
behavior we find incorrect. 

Data races are never acceptable, even if you can’t find a bad 
interleaving.

Checking correctness is usually: 1. finding there are no data races, then 
2. looking for bad interleavings.



Minimum Spanning Trees



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure electricity 

from the plant to every city.



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure 

electricity from the plant to every city.

1950’s
phones to each other.

phone

Everyone can call everyone else.

boss phone



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D

E

C

3
6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of locations, and wants the cheapest way to make sure

today ISP

cable

Everyone can reach the server

the Internet.



Minimum Spanning Trees

What do we need? A set of edges such that:

-Every vertex touches at least one of the edges. (the edges span the 
graph)

-The graph on just those edges is connected.

-i.e. the edges are all in the same connected component.

-A connected component is a vertex and everything you can reach 
from it.

-The minimum weight set of edges that meet those conditions

Claim: The set of edges we pick never has a cycle. Why?



Aside: Trees 

On graphs our tees:

-Don’t need a root (the vertices aren’t ordered, and we can start BFS 
from anywhere)

-Varying numbers of children neighbors

-Connected and no cycles 

An undirected, connected acyclic graph.

Tree (when talking about undirected graphs)



MST Problem

What do we need? A set of edges such that:
-Every vertex touches at least one of the edges. (the edges span the graph)

-The graph on just those edges is connected.

-The minimum weight set of edges that meet those conditions.

Our goal is a tree!

We’ll go through two different algorithms for this problem.

Given: an undirected, (connected, simple) weighted graph G

Find: A minimum-weight set of edges such that you can get 

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem



Example

Try to find an MST of this graph:

A

B

D F

E

C

3
6

2

1

4

5

8

9
10

7



Prim’s Algorithm

Algorithm idea: choose an arbitrary starting point. Add a new edge that:

-Will let you reach more vertices.

-Is as light as possible

We’d like each not-yet-connected vertex to be able to tell us the lightest 
edge we could add to connect it. 



Code
PrimMST(Graph G) 

   initialize distances to ∞

   mark source as distance 0

   mark all vertices unprocessed

   foreach(edge (source, v) ) {

      v.dist = weight(source,v)

   while(there are unprocessed vertices){

       let u be the closest unprocessed vertex

   add u.bestEdge to spanning tree

   foreach(edge (u,v) leaving u){

      if(weight(u,v) < v.cost){

         v.cost = weight(u,v)

     v.bestEdge = (u,v)

           }

   }

         mark u as processed

     }

   }



Try it Out

PrimMST(Graph G) 

   initialize distances to ∞

   mark source as distance 0 //pick arbitrarily

   mark all vertices unprocessed

   foreach(edge (source, v) )

      v.dist = w(source,v)

   while(there are unprocessed vertices){

      let u be the closest unprocessed vertex

      add u.bestEdge to spanning tree

      foreach(edge (u,v) leaving u){

     if(w(u,v) < v.cost){

        v.cost = w(u,v)

  v.bestEdge = (u,v)

          }

 }

       mark u as processed

    }

Vertex Cost Best Edge Processed

A

B

C

D

E

F

G

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2



Try it Out

Vertex Cost Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

PrimMST(Graph G) 

   initialize distances to ∞

   mark source as distance 0

   mark all vertices unprocessed

   foreach(edge (source, v) )

      v.dist = w(source,v)

   while(there are unprocessed vertices){

      let u be the closest unprocessed vertex

      add u.bestEdge to spanning tree

      foreach(edge (u,v) leaving u){

     if(w(u,v) < v.cost){

        v.cost = w(u,v)

  v.bestEdge = (u,v)

          }

 }

       mark u as processed

    }



PrimMST(Graph G) 

   initialize distances to ∞

   mark source as distance 0

   mark all vertices unprocessed //and add to priority queue

   foreach(edge (source, v) ) {

      v.dist = weight(source,v)

   while(there are unprocessed vertices){ 

       let u be the closest unprocessed vertex //removeMin!

   add u.bestEdge to spanning tree

   foreach(edge (u,v) leaving u){

      if(weight(u,v) < v.cost){

         v.cost = weight(u,v) //updatePriority!!

     v.bestEdge = (u,v)

           }

   }

         mark u as processed

     }

   }

Running time: Θ(𝐸 log 𝑉)
Analysis same as Dijkstra, but 

can assume 𝐸 ≥ 𝑉 − 1



Some Exercise Notes

We’ll ask you to implement Prim’s in Exercise 13.

You have a few options for the priority queue:

1. Use a Java library priority queue---but it doesn’t have updatePriority() 
so you’ll need a workaround: 
A. Add edges instead of vertices to the priority queue OR
B. Allow multiple copies of each vertex into the queue (instead of 
decreasing priority, put in a second copy at the new priority OR

2. Use your (Exercise 2) priority queue instead---call updatePriority!

Will these change the running time? No! log 𝐸 = Θ log 𝑉  for simple 
graphs.

Read the paragraph in the spec about this before you get too far. Also 
see alternate version of pseudocode in section slides tomorrow.



Does This Algorithm Always Work? 

Prim’s Algorithm is a greedy algorithm. Once it decides to include an 
edge in the MST it never reconsiders its decision. 

Greedy algorithms rarely work. 

There are special properties of MSTs that allow greedy algorithms to 
find them.

In fact MSTs are so magical that there’s more than one greedy algorithm 
that works.



Why do all of these MST Algorithms Work?

MSTs satisfy two very useful properties:

Cycle Property: The heaviest edge along a cycle is NEVER part of an 
MST.

Cut Property: Split the vertices of the graph any way you want into two 
sets A and B. The lightest edge with one endpoint in A and the other in 
B is ALWAYS part of an MST. 

Whenever you add an edge to a tree you create exactly one cycle, you 
can then remove any edge from that cycle and get another tree out. 

This observation, combined with the cycle and cut properties form the 
basis of all of the greedy algorithms for MSTs.


	Slide 1: Wrap Concurrency Minimum Spanning Trees
	Slide 2: Announcements
	Slide 3: Warm-Up
	Slide 4: Warm-up
	Slide 5: Some Java Notes
	Slide 6: Real Java locks
	Slide 7: synchronized
	Slide 8: synchronized
	Slide 9: Deadlock
	Slide 10: Multiple Locks
	Slide 11: Multiple Locks
	Slide 12: Deadlock
	Slide 13: Deadlock Solutions
	Slide 14: Conventional Wisdom
	Slide 15: Conventional Wisdom
	Slide 16: Conventional Wisdom
	Slide 17: Conventional Wisdom
	Slide 18: Conventional Wisdom
	Slide 19: Data Race
	Slide 20: A distinction
	Slide 21: Huh?
	Slide 22: What’s the problem?
	Slide 23: Bad Interleaving 1
	Slide 24: Bad Interleaving 2
	Slide 25: Bad Interleaving 2
	Slide 26: Bad Interleaving 3
	Slide 27: Bad Interleaving 3
	Slide 28: Bad Interleaving 4
	Slide 29: Bad Interleaving 4
	Slide 30: The Fix: Don’t allow interleaving!
	Slide 31: The Fix
	Slide 32: We Can’t Keep Getting Away With It
	Slide 33: Summary
	Slide 34: Minimum Spanning Trees
	Slide 35: Minimum Spanning Trees
	Slide 36: Minimum Spanning Trees
	Slide 37: Minimum Spanning Trees
	Slide 38: Minimum Spanning Trees
	Slide 39: Aside: Trees  
	Slide 40: MST Problem
	Slide 41: Example
	Slide 42: Prim’s Algorithm
	Slide 43: Code
	Slide 44: Try it Out
	Slide 45: Try it Out
	Slide 46
	Slide 47: Some Exercise Notes
	Slide 48: Does This Algorithm Always Work? 
	Slide 49: Why do all of these MST Algorithms Work?

