‘VVaHn—Up

class BankAccount{
private int balance =

private Lock 1k =
private Lock 1k2 =

0;
new Lock () ;
new Lock () ;

void withdraw (int amount) {
lk.acquire(); //might block
int b = getBalance();
if (amount > b) {
lk.release();
throw new
WithdrawTooLargeException () ;
setBalance (b - amount) ;
lk.release();

We said last time bank account should
have 1 lock per object, not 1 lock per
method that updates the balance.
Show a bad interleaving when we have
a lock for each method.

void deposit (int amount) {
1k2.acquire () ;
int b = getBalance();
setBalance (b + amount) ;
1k2.release () ;

‘Huh?

Consider this code...

class Stack<E>{

private E[] array =
private int index =
synchronized public
synchronized public
synchronized public E pop () {

if (isEmpty())

return arrayl[index--1];

_1;

}

public E peek() { E ans =

Boolean isEmpty ()
void push(E wval)

pop () ;

(E[])new Object[SIZE];

{ return index==-1;}
{array[++index]=val;}

{ throw new StackEmptyException(); }

push (ans); return ans; }

21

5/26/2025




5/26/2025

Minimum Spanning Trees

What do we need? A set of edges such that:
Every vertex touches at least one of the edges. (the edges span the
graph)
The graph on just those edges is connected.
i.e. the edges are all in the same connected component.

A connected component is a vertex and everything you can reach
from it.

The minimum weight set of edges that meet those conditions

Claim: The set of edges we pick never has a cycle. Why?

38

Example

Try to find an MST of this graph:

41



