
5/26/2025

1

Warm-Up
class BankAccount{
private int balance = 0;
private Lock lk = new Lock();
private Lock lk2 = new Lock();

void withdraw(int amount){
lk.acquire(); //might block
int b = getBalance();
if(amount > b) { 
lk.release();
throw new 

WithdrawTooLargeException();
setBalance(b – amount);
lk.release();

}

void deposit(int amount){
lk2.acquire();
int b = getBalance();
setBalance(b + amount);
lk2.release();

}

We said last time bank account should 
have 1 lock per object, not 1 lock per 
method that updates the balance.
Show a bad interleaving when we have 
a lock for each method.

Huh?
Consider this code…

class Stack<E>{
private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized public Boolean isEmpty() { return index==-1;}
synchronized public void push(E val) {array[++index]=val;}
synchronized public E pop() {
if(isEmpty()) { throw new StackEmptyException(); }
return array[index--];

}
public E peek() { E ans = pop(); push(ans); return ans; }

}

3

21



5/26/2025

2

Minimum Spanning Trees
What do we need? A set of edges such that:
-Every vertex touches at least one of the edges. (the edges span the 
graph)

-The graph on just those edges is connected.
-i.e. the edges are all in the same connected component.
-A connected component is a vertex and everything you can reach 
from it.

-The minimum weight set of edges that meet those conditions
Claim: The set of edges we pick never has a cycle. Why?

Example
Try to find an MST of this graph:

A

B

D F

E

C

3
6

2
1

4
5

8

910

7

38

41


