
More Concurrency CSE 332 25Sp

Lecture 23

Announcements

Optional readings (Grossman) covers next few weeks of parallelism and
concurrency

Monday Tuesday Wed Thursday Friday

This

Week
Ex 11 (parallel prog) out TODAY

Ex 10 (F-J prog) due

Ex 12 (concurrency,

GS) out

Next

Week
Veteran’s Day (no class)

OH cancelled or zoom

Ex 11

due

Ex 12 due

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

Bad Interleaving

Enqueue(x){

if(back==null){

back=new Node(x);

front=back;

}

else{

back.next=new Node(x);

back=back.next;

}

Enqueue(x){

 if(back==null){

 back=new Node(x);

 front=back;

 }

 else{

 back.next=new Node(x);

 back=back.next;

}

1

3 4

2

5
6

One Example

class BankAccount{

 private int balance=0;

 int getBalance() {return balance;}

 void setBalance(int x) {balance = x;}

 void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b-amount);

 }

…

}

Bad Interleavings

Suppose the account has balance of 150.

Two threads run: one withdrawing 100, another withdrawing 75.

Find a bad interleaving – what can go wrong?

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

1

2

3

4

56

Bad Interleavings

What’s the problem?

We stored the result of balance locally, but another thread overwrote
it after we stored it.

The value became stale.

A Principle

Principle: don’t let a variable that might be written become stale.

Ask for it again right before you use it

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(getBalance()-amount);

}

A Principle

Principle: don’t let a variable that might be written become stable.

Ask for it again right before you use it

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(getBalance()-amount);

}

That’s not a real concurrency principle. It doesn’t solve anything.

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

1

2

3

4

5 6

7 8

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

1

2

3

4

5

6

7

8

In this version, we can have negative balances without throwing the exception!

A Real Principle

Mutual Exclusion (aka Mutex, aka Locks)

Rewrite our methods so only one thread can use a resource at a time

-All other threads must wait.

We need to identify the “critical section”

-Portion of the code only a single thread can execute at once.

This MUST be done by the programmer. You, the programmer, know
what is “correct” for an interleaving and what isn’t. The compiler doesn’t.

class BankAccount{

 private int balance=0;

 private boolean busy = false;

 void withdraw(int amount){

 while(busy){ /* spin wait */ }

 busy = true;

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b-amount);

 busy = false;

 }

…

}

Does this code work?

BankAccount v.2

Locks

We can still have a bad interleaving.

If two threads see busy==False and get past the loop simultaneously.

We need a single operation that
-Checks if busy is False

-AND sets it to True if it is

-Where no other thread can interrupt us.

An operation is atomic if no other threads can interrupt it/interleave
with it.

Locks

There’s no regular java command to do that.

We need a new library

Lock (not the real Java class, but will let us understand the principles)

acquire() – blocks if lock is unavailable. When lock becomes
available, one thread only gets lock.

release() – allow another thread to acquire lock.

Need OS level support to implement.

Take an operating systems course to learn more.

Locks

class BankAccount{

private int balance = 0;

private Lock lk = new Lock();

…

 void withdraw(int amount){

 lk.acquire(); //might block

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();

}

Using Locks

Questions:

What is the critical section (i.e., the part of the code protected by the
lock)?

How many locks should we have

-One per BankAccount object?

-Two per BankAccount object (one in withdraw and a different lock
in deposit)?

-One (static) one for the entire class (shared by all BankAccount
objects)?

Using Locks

How many locks?

Different locks for withdraw and deposit will lead to bad interleavings.

-The shared resource is balance not the methods themselves.

One lock for the whole class isn’t wrong…but it is a bad design
decision.

Only one thread anywhere can do any withdraw/deposit operation; No
matter how many bank accounts there are.

There’s a tradeoff in how granular you make critical sections:

-Bigger: easier to rule out errors, but fewer threads can work at once.

Using Locks

More Questions:

There is a subtle bug in withdraw(), what is it?

Do we need locks for

-getBalance()?

-setBalance()?

-For the purposes of this question, assume those methods are public.

Using Locks

Bug in withdraw:

-When you throw an exception, you still hold onto the lock!

You could release the lock before throwing the exception.

Or use try{} finally{} blocks

try{ critical section }

finally{ lk.release()}

Re-entrant Locks

Do we need to lock setBalance()?

If it’s public, yes.

But now we have a problem:

withdraw will acquire the lock,

Then call setBalance…

Which needs the same lock

Re-entrant Locks

Our locks need to be re-entrant.

That is, the lock isn’t held by a single method call

But rather by a thread.

-Execution can re-enter another critical section, while holding the same
lock.

Lock needs to know which release call is the “real” release, and which
one is just the end of an inner method call.

Intuition: have a counter. Increment it when you “re-acquire” the lock,
decrement when you release. Until releasing on 0 then really release.

Take an operating systems course to learn more.

Some Java Notes

Real Java locks

A re-entrant lock is available in:

java.util.concurrent.locks.ReentrantLock

Methods are lock() and unlock()

synchronized

Java has built-in support for reentrant locks with the keyword
synchronized

synchronized (expression) {

//Critical section here

}

-Expression must evaluate to an object.

-Every object “is a lock” in java

-Lock is acquired at the opening brace and released at the matching
closing brace.

-Released even if control leaves due to throw/return/etc.

synchronized

If your whole method is a critical section

And the object you want for your lock is this

You can change the method header to include synchronized.

E.g. private synchronized void getBalance()

Equivalent of having

synchronized(this){ } around entire method body.

Deadlock

Multiple Locks

What happens when you need to acquire more than one lock? What
new thing could go wrong with this code?

void transferTo(int amt, BankAccount a){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}

Multiple Locks

THREAD 1, FROM ACCT1 TO ACCT2

void transferTo(…){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}

THREAD 2, FROM ACCT2 TO ACCT1

void transferTo(…){

 this.lk.acquire();

 a.lk.acquire();

 this.withdraw(amt);

 a.deposit(amt);

 a.lk.release();

 this.lk.release();

}

1 2

blocks blocks

UH-OH!

Thread 1 needs Thread 2 to let go, but

Thread 2 needs Thread 1 to let go

Deadlock

Deadlock occurs when we have a cycle of dependencies

i.e. we have threads 𝑇1, … , 𝑇𝑛 such that

thread 𝑇𝑖 is waiting for a resource held by 𝑇𝑖+1 and

𝑇𝑛 is waiting for a resource held by 𝑇1.

How can we set up our program so this doesn’t happen?

Deadlock Solutions

Smaller critical section:
-Acquire bank account 1’s lock, withdraw, release that lock

-Acquire bank account 2’s lock, deposit, release that lock

Maybe ok here, but exposes wrong total amount in bank while blocking.

Coarsen the lock granularity
-One lock for all accounts.

-Probably too coarse for good behavior

All methods acquiring multiple locks acquire them in the same order.
-E.g. in order of account number.

More options – take Operating Systems!

Conventional Wisdom

Conventional Wisdom

There are three types of memory

Thread local (each thread has its own copy)

Immutable (no thread overwrites that memory location)

Shared and mutable

-Synchronization needed to control access.

Whenever possible make memory of type 1 or 2.

If you can minimize/eliminate side-effects in your code, you can make
more memory type 2.

Conventional Wisdom

Consistent locking:

Every location that reads or writes a shared resource has a lock.

Even if you can’t think of a bad interleaving, better safe than sorry.

When deciding how big to make a critical section:

Start coarse grained, and move finer if you really need to improve
performance.

Conventional Wisdom

Avoid expensive computations or I/O in critical sections.

If possible release the lock, do the long computation, and reacquire the
lock.

Just make sure you haven’t introduced a race condition.

Think in terms of what operations need to be atomic.

i.e. consider atomicity first, then think about where the locks go.

Conventional Wisdom

Don’t write your own.

There’s probably a library that does what you need.

Use it.

There are thread-safe libraries like ConcurrentHashMap.

No need to do it yourself when experts already did it
-and probably did it better.

Some Java Notes

Real Java locks

A re-entrant lock is available in java.util

java.util.concurrent.locks.ReentrantLock

Methods are lock() and unlock()

synchronized

Java has built-in support for reentrant locks with the keyword
synchronized

synchronized (expression) {

Critical section

}

-Expression must evaluate to an object.

-Every object “is a lock” in java

-Lock is acquired at the opening brace and released at the matching
closing brace.

-Released even if control leaves due to throw/return/etc.

synchronized

If your whole method is a critical section

And the object you want for your lock is this

You can change the method header to include synchronized.

E.g. private synchronized void getBalance()

Equivalent of having

synchronized(this){ } around entire method body.

Data Race

A distinction

A Race Condition is an error in parallel code – it’s an error where the
output depends on the order of execution of the threads (who wins the
race to be executed).

We’ll divide into two types

A data race is an error where at (potentially) the same time:

1. Two threads are writing the same variable.

2. One thread writes to a variable while another is reading it.

A Bad interleaving

Is when incorrect behavior (as defined by the user) could result from a
particular sequential execution order.

Huh?

Consider this code…

class Stack<E>{

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized public Boolean isEmpty() { return index==-1;}

 synchronized public void push(E val) {array[++index]=val;}

 synchronized public E pop() {

 if(isEmpty()) { throw new StackEmptyException(); }

 return array[index--];

 }

 public E peek() { E ans = pop(); push(ans); return ans; }

}

What’s the problem?

That peek is, uh, interesting..

Certainly would work as sequential code (albeit probably bad style).

But with multiple threads…?

Well, there aren’t any data races. The calls to push and pop are
synchronized. We only ever have one thread touching any data (the
underlying array or index variable) at a time.

But it certainly isn’t correct! Peek has an intermediate state that (if
exposed during a bad interleaving) leads to incorrect behavior.

Bad Interleaving 1

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PUSH + ISEMPTY)

push(x);

boolean b = isEmpty();

12

34

5

Logical expectation: If we push (and haven’t popped) then the stack is

not empty.

This is a bad interleaving, without a data race.

Bad Interleaving 2

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES)

push(x);

 push(y);

Logical expectation: Pushed values go in LIFO order

Bad Interleaving 2

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES)

push(x);

 push(y);

12

34

5

Logical expectation: Pushed values go in LIFO order

This is a bad interleaving, without a data race.

Notice, this interleaving would be fine if we just had a generic list!

Bad Interleaving 3

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES, POP)

push(x);

 push(y);

 E e = pop();

Logical expectation: Popped values come in LIFO order

Bad Interleaving 3

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (TWO PUSHES, POP)

push(x);

 push(y);

 E e = pop();

13

25

6

Logical expectation: Popped values come in LIFO order

4

Bad Interleaving 4

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PEEK)

E ans = pop();

push(ans);

return ans;

Logical expectation: Peek on a non-empty heap does not throw an

exception

Bad Interleaving 4

THREAD A (PEEK)

E ans = pop();

push(ans);

return ans;

THREAD B (PEEK)

E ans = pop();

push(ans);

return ans;

12

53

4

Logical expectation: Peek on a non-empty heap does not throw an

exception

6

The Fix: Don’t allow interleaving!

Peek needs synchronization

Enlarge the critical section to be the whole method.

Ensures no one is even looking at the stack until we push back the
element we popped.

The Wrong “fix”: read-only interleavings

Problem so far: peek does writes, creating an intermediate state.

It’s tempting to try to fix the code like this:

peek , if “normally” implemented (or isEmpty) doesn’t actually write
anything. Maybe we can skip the synchronization on those.

Do NOT remove the synchronization. You will create a data race!

isEmpty reads the same data peek writes (e.g., the index variable).
That is definitionally a data race

We Can’t Keep Getting Away With It

It might look like isEmpty or peek not being synchronized won’t lead
to errors.

After all, that push is just one line! I can’t figure out how to make bad
interleavings.

Don’t think just because you can’t figure out a bad interleaving that a
data race won’t be a problem.

1. “single steps” aren’t always single steps.

2. A data race is an error by definition. The compiler does a lot of
optimizations (including reordering sequential code) assuming you
don’t have data races. If you have them, your code may execute wrong.
And good luck figuring that bug out..(see Grossman 7.2)

Summary

Two kinds of race conditions:

Data race (a thread potentially reads while another writes, or two
potentially write simultaneously)

Bad Interleaving: exposes intermediate state to other threads, leads to
behavior we find incorrect.

Data races are never acceptable, even if you can’t find a bad
interleaving.

	Slide 1: More Concurrency
	Slide 2: Announcements
	Slide 3: Bad Interleaving
	Slide 4: One Example
	Slide 5: Bad Interleavings
	Slide 6: Bad Interleaving
	Slide 7: Bad Interleaving
	Slide 8: Bad Interleavings
	Slide 9: A Principle
	Slide 10: A Principle
	Slide 11: Bad Interleaving
	Slide 12: Bad Interleaving
	Slide 13: Bad Interleaving
	Slide 14: A Real Principle
	Slide 15: BankAccount v.2
	Slide 16: Locks
	Slide 17: Locks
	Slide 18: Locks
	Slide 19: Using Locks
	Slide 20: Using Locks
	Slide 21: Using Locks
	Slide 22: Using Locks
	Slide 23: Re-entrant Locks
	Slide 24: Re-entrant Locks
	Slide 25: Some Java Notes
	Slide 26: Real Java locks
	Slide 27: synchronized
	Slide 28: synchronized
	Slide 29: Deadlock
	Slide 30: Multiple Locks
	Slide 31: Multiple Locks
	Slide 32: Deadlock
	Slide 33: Deadlock Solutions
	Slide 34: Conventional Wisdom
	Slide 35: Conventional Wisdom
	Slide 36: Conventional Wisdom
	Slide 37: Conventional Wisdom
	Slide 38: Conventional Wisdom
	Slide 39: Some Java Notes
	Slide 40: Real Java locks
	Slide 41: synchronized
	Slide 42: synchronized
	Slide 43: Data Race
	Slide 44: A distinction
	Slide 45: Huh?
	Slide 46: What’s the problem?
	Slide 47: Bad Interleaving 1
	Slide 48: Bad Interleaving 2
	Slide 49: Bad Interleaving 2
	Slide 50: Bad Interleaving 3
	Slide 51: Bad Interleaving 3
	Slide 52: Bad Interleaving 4
	Slide 53: Bad Interleaving 4
	Slide 54: The Fix: Don’t allow interleaving!
	Slide 55: The Wrong “fix”: read-only interleavings
	Slide 56: We Can’t Keep Getting Away With It
	Slide 57: Summary

