
Wrap Parallel
Concurrency

CSE 332 Sp25

Lecture 22

Announcements

Optional readings (Grossman) covers next few weeks of parallelism and
concurrency

Monday Tuesday Wed Thursday Friday

This

Week
Ex 9 (reductions, gs) due

Ex 11 (parallel prog) out

TODAY Ex 10 (F-J prog) due

Ex 12 (concurrency,

GS) out

Next

Week
Veteran’s Day (no class) Ex 11

due

Ex 12 due

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

Amdahl’s Law: Moving Forward

Unparallelized code becomes a bottleneck quickly.

What do we do? Design smarter algorithms!

Consider the following problem:

Given an array of numbers, return an array with the “running sum”

3 7 6 2 4

3 10 16 18 22

6 4 16 10 16 14 2 8

Sum: 76

Left sum:

Sum: 36

Left Sum:

S: 6

L:

Sum: 10

Left Sum:

Sum: 40

Left Sum:

Sum: 26

Left Sum:
Sum: 30

Left Sum:

Sum: 10

Left Sum:

S: 4

L:

S: 16

L:
S: 10

L:

S: 16

L:

S: 14

L:

S: 2

L:

S: 8

L:

Range 0,8

Range 4,8

Range

6,8
Range

4,6

Range

2,4
Range

0,2

Range

0,4

6 4 16 10 16 14 2 8

Sum: 76

Left sum: 0

Sum: 36

Left Sum: 0

S: 6

L: 0

Sum: 10

Left Sum: 0

Sum: 40

Left Sum:0+36=36

Sum: 26

Left Sum: 10
Sum: 30

Left Sum: 36

Sum: 10

Left Sum: 66

S: 4

L: 6

S: 16

L: 10
S: 10

L: 26

S: 16

L: 36

S: 14

L: 52

S: 2

L: 66

S: 8

L: 68

Your right child has a left sum of:

Your left sum + its sibling’s sum.

Your left child gets your

left sum.

Range 0,8

Range 4,8

Range

6,8
Range

4,6

Range

2,4
Range

0,2

Range

0,4

Second Pass

Once we’ve finished calculating the sums, we’ll start on the left sums.
Can we do that step in parallel?

YES!

Why are we doing two separate passes?
Those sum values have to be stored and ready.

Second pass has:
Work:

Span:

Second Pass

Once we’ve finished calculating the sums, we’ll start on the left sums.
Can we do that step in parallel?

YES!

Why are we doing two separate passes?
Those sum values have to be stored and ready.

Second pass has:
Work:𝑂(𝑛)

Span:𝑂(log 𝑛)

Third Pass

What’s our final answer?

Our sequential code said element i of the new array should be

arr[i] + output[i-1]

Or equivalently

arr[i] + left_sum[i]

Just need one more map using the data structure.

6 4 16 10 16 14 2 8

Sum: 76

Left sum: 0

Sum: 36

Left Sum: 0

S: 6

L: 0

Sum: 10

Left Sum: 0

Sum: 40

Left Sum:0+36=36

Sum: 26

Left Sum: 10
Sum: 30

Left Sum: 36

Sum: 10

Left Sum: 66

S: 4

L: 6

S: 16

L: 10
S: 10

L: 26

S: 16

L: 36

S: 14

L: 52

S: 2

L: 66

S: 8

L: 68

Your right child has a left sum of:

Your left sum + its sibling’s sum.

Your left child gets your

left sum.

6 10 26 36 52 66 68 76

Range 0,8

Range 4,8

Range

6,8
Range

4,6

Range

2,4
Range

0,2

Range

0,4

Analyzing Parallel Prefix

What’s the

Work?

Span?

First pass was a slightly modified version of our sum reduce code.

Second pass had a similar structure

Third pass was a map

Analyzing Parallel Prefix

What’s the

Work 𝑂(𝑛)

Span 𝑂(log 𝑛)

First pass was a slightly modified version of our sum reduce code.

Second pass had a similar structure.

Third pass was a map.

Our Patterns So Far

1. Map
-Apply a function to every element of an array

2. Reduce
-Create a single object to summarize an array (e.g., sum of all elements)

3. Prefix
-Compute answer[i]=𝑓(arr[i], answer[i-1])

Parallel Pack (aka Filter)

You want to find all the elements in an array meeting some property.

And move ONLY those into a new array.

Input:

Want every element >= 10

Output:

6 4 16 10 16 14 2 8

16 10 16 14

Parallel Pack

Easy – do a map to find the right elements…

Hard – How do you copy them over?

Parallel Pack

Easy – do a map to find the right elements…

Hard – How do you copy them over?

I need to know what array location to store in,

i.e. how many elements to my left will go in the new array.

Parallel Pack

Easy – do a map to find the right elements…

Hard – How do you copy them over?

I need to know what array location to store in,

i.e. how many elements to my left will go in the new array.

-Use Parallel Prefix!

Parallel Pack

Step 1: Parallel Map – produce bit vector of elements meeting property

Step 2: Parallel prefix sum on the bit vector

Step 3: Parallel map for output.

6 4 16 10 16 2 14 8

0 0 1 1 1 0 1 0

0 0 1 2 3 3 4 4

16 10 16 14

Step 3

How do we do step 3?

i.e. what’s the map?

if(bits[i] == 1)

 output[bitsum[i] – 1] = input[i];

Parallel Pack

We did 3 phases:

A map

A prefix

And another map.

Work:

Span:

Remark: You could fit this into 2 phases instead of 3. Won’t change O().

Parallel Pack

We did 3 phases:

A map

A prefix

And another map.

Work: 𝑂(𝑛)

Span: 𝑂(log 𝑛)

Remark: You could fit this into 2 phases instead of 3. Won’t change O().

Four Patterns

We’ve now seen four common patterns in parallel code

1. Map

2. Reduce

3. Prefix

4. Pack (a.k.a. Filter)

Making other code faster

Sometimes making parallel algorithms is just “can I turn my existing
code into maps/reduces/prefixes/packs.

Other times parallel code with optimal span often requires changing to
a different algorithm that parallelizes better.

-These strategies often increase the work (slightly).

Two more optional examples: merge sort and quicksort, in parallel.

Details of the algorithms might change
-E.g., merge step in mergesort altered to run quicker in parallel.

Not responsible for them, but if you’re curious, see lecture 21 slides (or
the Grossman text).

Amdahl’s Law

Amdahl’s Law

Now it’s time for some bad news.

In practice, your program won’t just sum all the elements in an array.

You will have a program with

Some parts that parallelize well
-Can turn them into a map or a reduce.

Some parts that won’t parallelize at all
-Operations on a linked list. (data structures matter!!!)

-Reading a text file.

-A computation where each step needs the result of the previous steps.

Amdahl’s Law

Let the work be 1 unit of time.

Let 𝑆 be the portion of the code that is unparallelizable (“sequential”).

𝑇1 = 𝑆 + 1 − 𝑆 = 1.

At best we can get perfect linear speedup on the parallel portion

𝑇𝑃 ≥ 𝑆 +
1−𝑆

𝑃

So overall speedup with 𝑃 processors

𝑇1

𝑇𝑃
≤

1

𝑆+(1−𝑆)/𝑃

Therefore Parallelism:
𝑇1

𝑇∞
≤

1

𝑆

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors

6 processors

22 processors

67 processors

1,000,000 processors (approximately).

𝑇1

𝑇𝑃
≤

1

𝑆 +
1 − 𝑆

𝑃

Amdahl’s Law

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors: 33 + 67/3 ≈ 55 seconds

6 processors: 33 + 67/6 ≈ 44 seconds

22 processors: 33 + 67/22 ≈ 36 seconds

67 processors 33 + 67/67 ≈ 34 seconds

1,000,000 processors (approximately). ≈ 33 seconds

𝑇1

𝑇𝑃
≤

1

𝑆 +
1 − 𝑆

𝑃

Amdahl’s Law

Amdahl’s Law

This is BAD NEWS

If 1/3 of our program can’t be parallelized, we can’t get a speedup
better than 3.

 No matter how many processors we throw at our problem.

And while the first few processors make a huge difference, the benefit
diminishes quickly.

Amdahl’s Law and Moore’s Law

In the Moore’s Law days, 12 years was long enough to get 100x
speedup.

Suppose in 12 years, the clock speed is the same, but you have 256
processors.

What portion of your program can you hope to leave unparallelized?

100 ≤
1

𝑆+
1−𝑆

256

[wolframalpha says] 𝑆 ≤ 0.0061.

Amdahl’s Law and Moore’s Law

Moore’s Law was “a business decision”

 - How much effort/money/employees are dedicated to improving
processors so computers got faster.

Amdahl’s Law is a theorem

 - You can prove it formally.

Concurrency

Sharing Resources

So far we’ve been writing parallel algorithms that don’t share resources.

Fork-join algorithms all had a simple structure

-Each thread had memory only it accesses.

-Results of one thread not accessed until joined.

-The structure of the code ensured sharing didn’t go wrong.

Can’t use the same strategy when memory overlaps

Thread doing independent tasks on same resources.

Parallel Code

PC

local

vars
PC

local

vars

PC

local

vars

Heap memory

Objects

Data Structures

Why Concurrency?

If we’re not using them to solve the same big problem, why threads?

Code responsiveness

-One thread responds to GUI, another does big computations

Processor utilization

-If a thread needs to go to disk, can throw another thread on while it
waits.

Failure isolation

-Don’t want one exception to crash the whole program.

Concurrency

Different threads might access the same resources

In unpredictable orders or even simultaneously

Simultaneous access is rare

-Makes testing very difficult

-Instead, we’ll be disciplined when writing the code.

In this class, we’ll focus on code idioms that are known to work.

Only some discussion of Java specifics – there are more details in the
Grossman notes.

Sharing a Queue

Two threads both want to insert into a queue.

Each has its own program counter, they can each be running different
parts of the code simultaneously.

They can arbitrarily “interrupt” each other.

What can go wrong?

Bad Interleaving

Enqueue(x){

 if(back==null){

 back=new Node(x);

 front=back;

 }

 else{

 back.next=new Node(x);

 back=back.next;

}

Enqueue(x){

 if(back==null){

 back=new Node(x);

 front=back;

 }

 else{

 back.next=new Node(x);

 back=back.next;

}

Bad Interleaving

Enqueue(x){

 if(back==null){

 back=new Node(x);

 front=back;

 }

 else{

 back.next=new Node(x);

 back=back.next;

}

Enqueue(x){

 if(back==null){

 back=new Node(x);

 front=back;

 }

 else{

 back.next=new Node(x);

 back=back.next;

}

1

3 4

2

5
6

Bad Interleaving

if(back==null){

 back=new Node(10);

 front=back;

 }

if(back==null){

 back=new Node(5);

 front=back;

 }

front back

5
10

One Example

class BankAccount{

 private int balance=0;

 int getBalance() {return balance;}

 void setBalance(int x) {balance = x;}

 void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b-amount);

 }

…

}

Bad Interleavings

Suppose the account has balance of 150.

Two threads run: one withdrawing 100, another withdrawing 75.

Find a bad interleaving – what can go wrong?

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > b)

 throw new …;

 setBalance(b-amount);

}

1

2

3

4

56

Bad Interleavings

What’s the problem?

We stored the result of balance locally, but another thread overwrote
it after we stored it.

The value became stale.

A Principle

Principle: don’t let a variable that might be written become stale.

Ask for it again right before you use it

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(getBalance()-amount);

}

A Principle

Principle: don’t let a variable that might be written become stable.

Ask for it again right before you use it

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(getBalance()-amount);

}

That’s not a real concurrency principle. It doesn’t solve anything.

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

1

2

3

4

5 6

7 8

Bad Interleaving

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

void withdraw(int amount){

 int b = getBalance();

 if(amount > getBalance())

 throw new …;

 setBalance(

 getBalance()-amount);

}

There’s still a bad interleaving. Find one.

1

2

3

4

5

6

7

8

In this version, we can have negative balances without throwing the exception!

A Real Principle

Mutual Exclusion (aka Mutex, aka Locks)

Rewrite our methods so only one thread can use a resource at a time

-All other threads must wait.

We need to identify the critical section

-Portion of the code only a single thread can execute at once.

This MUST be done by the programmer.

class BankAccount{

 private int balance=0;

 private boolean busy = false;

 void withdraw(int amount){

 while(busy){ /* spin wait */ }

 busy = true;

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b-amount);

 busy = false;

 }

…

}

Does this code work?

BankAccount v.2

Locks

We can still have a bad interleaving.

If two threads see busy = false and get past the loop simultaneously.

We need a single operation that
-Checks if busy is false

-AND sets it to true if it is

-Where no other thread can interrupt us.

An operation is atomic if no other threads can interrupt it/interleave
with it.

Locks

There’s no regular java command to do that.

We need a new library

Lock (not the real Java class, but will let us understand the principles)

acquire() – blocks if lock is unavailable. When lock becomes
available, one thread only gets lock.

release() – allow another thread to acquire lock.

Need OS level support to implement.

Take an operating systems course to learn more.

Locks

class BankAccount{

private int balance = 0;

private Lock lk = new Lock();

…

 void withdraw(int amount){

 lk.acquire(); //might block

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();

}

Using Locks

Questions:

What is the critical section (i.e., the part of the code protected by the
lock)?

How many locks should we have

-One per BankAccount object?

-Two per BankAccount object (one in withdraw and a different lock
in deposit)?

-One (static) one for the entire class (shared by all BankAccount
objects)?

Using Locks

More Questions:

There is a subtle bug in withdraw(), what is it?

Do we need locks for

-getBalance()?

-setBalance()?

-For the purposes of this question, assume those methods are public.

Using Locks

How many locks?

Different locks for withdraw and deposit will lead to bad interleavings.

-The shared resource is balance not the methods themselves.

One lock for the whole class isn’t wrong…but it is a bad design
decision.

Only one thread anywhere can do any withdraw/deposit operation; No
matter how many bank accounts there are.

There’s a tradeoff in how granular you make critical sections:

-Bigger: easier to rule out errors, but fewer threads can work at once.

Using Locks

Bug in withdraw:
-When you throw an exception, you still hold onto the lock!

You could release the lock before throwing the exception.

Or use try{} finally{} blocks

try{ critical section }

finally{ lk.release()}

Re-entrant Locks

Do we need to lock setBalance()?

If it’s public, yes.

But now we have a problem:

withdraw will acquire the lock,

Then call setBalance…

Which needs the same lock

Re-entrant Locks

Our locks need to be re-entrant.

That is, the lock isn’t held by a single method call

But rather by a thread.

-Execution can re-enter another critical section, while holding the same
lock.

Lock needs to know which release call is the “real” release, and which
one is just the end of an inner method call.

Intuition: have a counter. Increment it when you “re-acquire” the lock,
decrement when you release. Until releasing on 0 then really release.

Take an operating systems course to learn more.

Some Java Notes

Real Java locks

A re-entrant lock is available in:

java.util.concurrent.locks.ReentrantLock

Methods are lock() and unlock()

synchronized

Java has built-in support for reentrant locks with the keyword
synchronized

synchronized (expression) {

Critical section

}

-Expression must evaluate to an object.

-Every object “is a lock” in java

-Lock is acquired at the opening brace and released at the matching
closing brace.

-Released even if control leaves due to throw/return/etc.

synchronized

If your whole method is a critical section

And the object you want for your lock is this

You can change the method header to include synchronized.

E.g. private synchronized void getBalance()

Equivalent of having

synchronized(this){ } around entire method body.

	Default Section
	Slide 1: Wrap Parallel Concurrency
	Slide 2: Announcements
	Slide 3: Amdahl’s Law: Moving Forward
	Slide 4
	Slide 5
	Slide 6: Second Pass
	Slide 7: Second Pass
	Slide 8: Third Pass
	Slide 9
	Slide 10: Analyzing Parallel Prefix
	Slide 11: Analyzing Parallel Prefix
	Slide 12: Our Patterns So Far
	Slide 13: Parallel Pack (aka Filter)
	Slide 14: Parallel Pack
	Slide 15: Parallel Pack
	Slide 16: Parallel Pack
	Slide 17: Parallel Pack
	Slide 18: Step 3
	Slide 19: Parallel Pack
	Slide 20: Parallel Pack
	Slide 21: Four Patterns
	Slide 22: Making other code faster
	Slide 23: Amdahl’s Law
	Slide 24: Amdahl’s Law
	Slide 25: Amdahl’s Law
	Slide 26: Amdahl’s Law
	Slide 27: Amdahl’s Law
	Slide 28: Amdahl’s Law
	Slide 29: Amdahl’s Law and Moore’s Law
	Slide 30: Amdahl’s Law and Moore’s Law
	Slide 31: Concurrency
	Slide 32: Sharing Resources
	Slide 33: Parallel Code
	Slide 34: Why Concurrency?
	Slide 35: Concurrency
	Slide 36: Sharing a Queue
	Slide 37: Bad Interleaving
	Slide 38: Bad Interleaving
	Slide 39: Bad Interleaving
	Slide 40: One Example
	Slide 41: Bad Interleavings
	Slide 42: Bad Interleaving
	Slide 43: Bad Interleaving
	Slide 44: Bad Interleavings
	Slide 45: A Principle
	Slide 46: A Principle
	Slide 47: Bad Interleaving
	Slide 48: Bad Interleaving
	Slide 49: Bad Interleaving
	Slide 50: A Real Principle
	Slide 51: BankAccount v.2
	Slide 52: Locks
	Slide 53: Locks
	Slide 54: Locks
	Slide 55: Using Locks
	Slide 56: Using Locks
	Slide 57: Using Locks
	Slide 58: Using Locks
	Slide 59: Re-entrant Locks
	Slide 60: Re-entrant Locks
	Slide 61: Some Java Notes
	Slide 62: Real Java locks
	Slide 63: synchronized
	Slide 64: synchronized

