
Parallelism 2
Analysis, Amdahl’s Law

CSE 332 25Sp

Lecture 20

Announcements

Optional readings (Grossman) covers next few weeks of parallelism and
concurrency

Monday Tuesday Wed Thursday Friday

This

Week
Ex 7 (DFS, coding) due

Ex 9 (reductions, gs) out

Bring

laptop!

TODAY

Ex 8 (Dijkstra, gs) due

Ex 10,11 (parallel prog)

out

Next

Week
Ex 9 (reductions, gs) due Ex 10 (parallel, prog)

due

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

ParallelSum: Take 2
int sum(int[] arr){

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i<4; i++)

ts[i] = new SumThread(arr, i*len/4 (i+1)*len/4);

ts[i].fork()

for(int i=0; i<4; i++)

ts[i].join()

ans += ts[i].ans;

return ans;

}

Optimizing: Number of Threads

The last version of ParallelSum will work.

I.e. it will always get the right answer

And it will use 4 threads.

But…

What if we get a new computer with 6 processors?
-We’ll have to rewrite our code

What if the OS decides “no, you only get 2 processors right now.”

What if our threads take wildly different amounts of time?

Optimizing: Number of Threads

The counter-intuitive solution:

Even more parallelism!

Divide the work into more smaller pieces.

If you get more processors, you take advantage of all of them.

If one thread finishes super fast, throw the next thread to that processor.

“Load Imbalance”

Engineering Question:

-Let’s say we change our ParallelSum code so each thread adds 10
elements.

-Is that a good idea? What’s the running time of the code going to be?

Thread Creation

If we create 𝑛/10 threads, each summing 10 elements…

Creating 𝑛/10 threads one-right-after-the-other takes Θ(𝑛) time.

(Same with joining the threads together at the end).

This is a linear time algorithm now. Can we do better?

Divide and Conquer: Parallelism

What if we want a bunch of threads, but don’t want to spend a bunch of
time making threads?

Parallelize thread creation too!

Divide and Conquer SumThread

Class SumThread extends SomeThreadObject{

//constructor, fields unchanged.

void run(){

if(hi-lo == 1)

ans = arr[lo]

else{

SumThread left = new SumThread(arr, lo, (hi+lo)/2);

SumThread right = new SumThread(arr, (hi+lo)/2, hi);

left.start(); right.start();

left.join(); right.join();

ans = left.ans + right.ans;

}

}

}

Divide And Conqure SumThread

int sum(int[] arr){

SumThread t = new SumThread(arr, 0, arr.length);

t.run(); //this call isn’t making a new thread

return t.ans;

}

Divide And Conquer Optimization

Imagine calling our current algorithm on an array of size 4.

How many threads does it make

6

It shouldn’t take that many threads to add a few numbers.

And every thread introduces A LOT of overhead.

We’ll want to cut-off the parallelism when the threads cause too much
overhead.

Similar optimizations can be used for (sequential) merge and quick sort

Cut-offs

Are we really saving that much?

Suppose we’re summing an array of size 230

And we set a cut-off of size-100
-i.e. subarrays of size 100 are summed without making any new threads.

What fraction of the threads have we just eliminated?

99% !!!! (for fun you should check the math)

One more optimization

A small tweak to our code will eliminate half of our threads

left.fork();

right.fork();

left.join();

right.join();
left.fork();

right.run();

left.join();
Old version.

Too many threads

New version.

Good amount of threads

Current thread actually executes the right hand side.

Ordering of these commands is very important!

Analysis

None of our optimizations will make a difference in the O() analysis

 But they will make a difference in practice.

ForkJoin Framework

ForkJoin Framework
Method Use

compute Thread objects override (void/V) method compute

When fork is called, compute method is executed

A bit like main(…)---default starting point

fork Starts a new thread executing compute method

join Calling otherThread.join() pauses this thread

until otherThread has completed its compute.

RecursiveTask<V> Class which we extend to make threads to return a
result of type V. compute returns V for this object

Recursive Action Class we extend when we don’t return a result

ForkJoinPool Object that manages threads

invoke Pool method to start first thread object.

Other Engineering Decisions

Getting every ounce of speedup out requires a lot of thought.

Choose a good sequential threshold
-Depends on the library

-For ours, a few hundred to one-thousand operations in the non-parallel call is
recommended.

Library needs to “warm up”

Wait for more processors?

Memory Hierarchy
-Won’t focus on this, but it can have an effect.

ForkJoin Library---Magic Incantations

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

import java.util.concurrent.RecursiveAction;

Two possible classes to extend

RecursiveTask<E> (Returns an E object)

RecrusiveAction (Doesn’t return anything)

First thread created by:

static final ForkJoinPool POOL = new ForkJoinPool();

POOL.invoke(firstThd);

ForkJoin Library summary

Start a new thread: fork()

Wait for a thread to finish: join()

-join() will return an object, if you extended RecursiveTask

Your Thread objects need to write a compute() method

Calling compute() does NOT start a new thread in the JVM.

ArraySum in ForkJoin

class SumThread extends RecursiveTask<Integer>{

 int lo; int hi; int[] arr; int cutoff;

 static final ForkJoinPool POOL = new ForkJoinPool();

 public SumThread(int l, int h, int[] a, int c){

 lo = l;

 hi = h;

 arr = a;

 cutoff = c;

 }

…

…

protected Integer compute(){

 if(hi-lo < cutoff){

 int ans=0;

 for(int i=lo; i<hi; i++)

 ans += arr[i];

 return new Integer(ans);

 }

 else{

 SumThread left = new SumThread(arr, lo, (hi+lo)/2);

 SumThread right = new SumThread(arr, (hi+lo)/2, hi);

 left.fork();

 Integer rightAns = right.compute();

 Integer leftAns = left.join();

 return newInteger(leftAns + rightAns);

 }

}

…

…

 public static Integer sum(int[] arr){

 SumThread thd = new SumThread(0, arr.length, arr, 500);

 POOL.invoke(thd);

 }

}//end class SumThread

The “reduce” pattern

Reduce

It shouldn’t be too hard to imagine how to modify this code to:

1. Find the maximum element in an array.

2. Determine if there is an element meeting some property.

3. Find the left-most element satisfying some property.

4. Count the number of elements meeting some property.

5. Check if elements are in sorted order.

6. [And so on…]

Reduce

You did similar problems yesterday.

The key is to describe:

1. How to compute the answer at the cut-off.

2. How to merge the results of two subarrays.

We say parallel code like this “reduces” the array

 We’re reducing the arrays to a single item

 Then combining with an associative operation.

 e.g. sum, max, leftmost, product, count, or, and, …

Doesn’t have to be a single number, could be an object.

Reduce – Terminology

An operation like we’ve seen is often called “reducing” the input.

Don’t confuse this operation with “reductions” from lecture 18.

We’ll call the parallelism-related operation “a reduce.” or “a reduce
operation” (and the algorithm design thing “a reduction”)

This convention isn’t universal (you’ll find resources calling the parallel
code “a reduction”)

Map

Another common pattern in parallel code

Just applies some function to each element in a collection.

-No combining!

PowMod from yesterday was a map

Easy example: vector addition

These operations are common enough that some processors
do vector computations in parallel at the hardware level.
-That’s a major reason why GPUs are so popular for ML applications.

Maps & Reduces

Maps and Reduces are “workhorses” of parallel programming.

Google’s MapReduce framework relies on these showing up frequently.

-or Hadoop (the open-source version)

-Usually your reduces will extend RecursiveTask<E>

-Usually your maps will extend RecursiveAction

Analysis

Analysis

Big idea: let 𝑃, the number of processors, be another variable in our
big-O analysis.

Let 𝑇𝑃 be the big-O running time with 𝑃 processors.

What is 𝑇𝑃 for summing an array?

We’ll need to do computations in a new way.

Useful Diagram

…
…

…

One node per

O(1) operation

Edge from 𝑢 to 𝑣 if

𝑣 waits for 𝑢.
I.e. 𝑣 can’t start until

𝑢 finishes.

Might be due to
join or might be

sequential code.

Useful Diagram

One node per

O(1) operation

What does the

dependency

graph look like for

that snippet?

01: x=x+5

02: y=x+7

03: z=x+13

Useful Diagram

01

0302

One node per

O(1) operation

01: x=x+5

02: y=x+7

03: z=x+13

Useful Diagram

For parallel code:

Fork will usually “split” a node into two nodes (even if only one new
thread is created), parent to two children (or many if many forks)

Join will usually “combine” two nodes into one node (even if only one
thread is joined), two sources to one destination (or many if many joins)

Useful Diagram

…
…

…

One node per

O(1) operation

Divide to create

threads.

Join and

combine to

create final

answer.

Base Case

computations

Useful Diagram

…
…

…

One node per

O(1) operation

Question: why are

there no cycles in

this graph?

Analysis

Big idea: let 𝑃, the number of processors, be another variable in our
big-O analysis.

Let 𝑇𝑃 be the big-O running time with 𝑃 processors.

What is 𝑇𝑃 for summing an array?

𝑂
𝑛

𝑃
+ log 𝑛

Definitions

Work: 𝑇1
it’s 𝑂(𝑛) for summing an array.

Probably (but not necessarily!!!) going to be equivalent to the running
time of the code you would write if you had never heard of parallelism.

Definition is running time of parallel code if you had a single processor.

Span: 𝑇∞
𝑂(log 𝑛) for summing an array

𝑇? is running time with ? Processors, so span is “you always have a
processor available”

Longest path in graph of computation. “critical path”

More Definitions

Speedup: for 𝑃 processors:
𝑇1

𝑇𝑃

ideally: speedup will be close to 𝑃 (“perfect linear speedup”)

E.g. if 𝑇1 = 100sec And 𝑇4 = 25sec, then speedup=
100

25
= 4

Parallelism:
𝑇1

𝑇∞

the speedup when you have as many processors as you can use (there’s
a point at which another one won’t actually help).

Optimal 𝑇𝑃

We can calculate 𝑇1, 𝑇∞ theoretically.

But we probably care about 𝑇𝑃 for, say, 𝑃 = 4.

𝑇𝑃 can’t beat (make sure you understand why):

-𝑇1/𝑃

-𝑇∞

So optimal running time (asymptotically)

𝑇𝑃 = 𝑂(𝑇1/𝑃) + 𝑇∞)
ForkJoin Framework has expected time guarantee of that O()

Assuming you write your code well enough.

Uses randomized scheduling.

Amdahl’s Law

Amdahl’s Law

Now it’s time for some bad news.

In practice, your program won’t just sum all the elements in an array.

You will have a program with

Some parts that parallelize well
-Can turn them into a map or a reduce.

Some parts that won’t parallelize at all
-Operations on a linked list. DATA STRUCTURES MATTER!!!

-Reading a text file.

-A computation where each step needs the result of the previous steps.

Amdahl’s Law

Let the work be 1 unit of time.

Let 𝑆 be the portion of the code that is unparallelizable (“sequential”).

𝑇1 = 𝑆 + 1 − 𝑆 = 1.

At best we can get perfect linear speedup on the parallel portion

𝑇𝑃 ≥ 𝑆 +
1−𝑆

𝑃

So overall speedup with 𝑃 processors

𝑇1

𝑇𝑃
≤

1

𝑆+(1−𝑆)/𝑃

Therefore Parallelism:
𝑇1

𝑇∞
≤

1

𝑆

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors

6 processors

22 processors

67 processors

1,000,000 processors (approximately).

𝑇1

𝑇𝑃
≤

1

𝑆 +
1 − 𝑆

𝑃

Amdahl’s Law

Amdahl’s Law

Suppose our program takes 100 seconds.

And 𝑆 is 1/3 (i.e. 33 seconds).

What is the running time with

3 processors: 33 + 67/3 ≈ 55 seconds

6 processors: 33 + 67/6 ≈ 44 seconds

22 processors: 33 + 67/22 ≈ 36 seconds

67 processors 33 + 67/67 ≈ 34 seconds

1,000,000 processors (approximately). ≈ 33 seconds

𝑇1

𝑇𝑃
≤

1

𝑆 +
1 − 𝑆

𝑃

Amdahl’s Law

Amdahl’s Law

This is BAD NEWS

If 1/3 of our program can’t be parallelized, we can’t get a speedup
better than 3.

 No matter how many processors we throw at our problem.

And while the first few processors make a huge difference, the benefit
diminishes quickly.

Amdahl’s Law and Moore’s Law

In the Moore’s Law days, 12 years was long enough to get 100x
speedup.

Suppose in 12 years, the clock speed is the same, but you have 256
processors.

What portion of your program can you hope to leave unparallelized?

100 ≤
1

𝑆+
1−𝑆

256

[wolframalpha says] 𝑆 ≤ 0.0061.

Amdahl’s Law and Moore’s Law

Moore’s Law was “a business decision”

 - How much effort/money/employees are dedicated to improving
processors so computers got faster.

Amdahl’s Law is a theorem

 - You can prove it formally.

Amdahl’s Law: Moving Forward

Unparallelized code becomes a bottleneck quickly.

What do we do? Design smarter algorithms!

Consider the following problem:

Given an array of numbers, return an array with the “running sum”

3 7 6 2 4

3 10 16 18 22

More clever algorithms

Doesn’t look parallelizable…

But it is!

Think about how you might do this (it’s NOT obvious)

We’ll go through it on Monday!

	Slide 1: Parallelism 2 Analysis, Amdahl’s Law
	Slide 2: Announcements
	Slide 3: ParallelSum: Take 2
	Slide 4: Optimizing: Number of Threads
	Slide 5: Optimizing: Number of Threads
	Slide 6: Thread Creation
	Slide 7: Divide and Conquer: Parallelism
	Slide 8: Divide and Conquer SumThread
	Slide 9: Divide And Conqure SumThread
	Slide 10: Divide And Conquer Optimization
	Slide 11: Cut-offs
	Slide 12: One more optimization
	Slide 13: Analysis
	Slide 14: ForkJoin Framework
	Slide 15: ForkJoin Framework
	Slide 16: Other Engineering Decisions
	Slide 17: ForkJoin Library---Magic Incantations
	Slide 18: ForkJoin Library summary
	Slide 19: ArraySum in ForkJoin
	Slide 20
	Slide 21
	Slide 22: The “reduce” pattern
	Slide 23: Reduce
	Slide 24: Reduce
	Slide 25: Reduce – Terminology
	Slide 26: Map
	Slide 27: Maps & Reduces
	Slide 28: Analysis
	Slide 29: Analysis
	Slide 30: Useful Diagram
	Slide 31: Useful Diagram
	Slide 32: Useful Diagram
	Slide 33: Useful Diagram
	Slide 34: Useful Diagram
	Slide 35: Useful Diagram
	Slide 36: Analysis
	Slide 37: Definitions
	Slide 38: More Definitions
	Slide 39: Optimal cap T sub cap P
	Slide 40: Amdahl’s Law
	Slide 41: Amdahl’s Law
	Slide 42: Amdahl’s Law
	Slide 43: Amdahl’s Law
	Slide 44: Amdahl’s Law
	Slide 45: Amdahl’s Law
	Slide 46: Amdahl’s Law and Moore’s Law
	Slide 47: Amdahl’s Law and Moore’s Law
	Slide 48: Amdahl’s Law: Moving Forward
	Slide 49: More clever algorithms

