
5/16/2025

1

ForkJoin Framework
UseMethod
Thread objects override (void/V) method compute
When fork is called, compute method is executed 
A bit like main(…)---default starting point

compute

Starts a new thread executing compute methodfork

Calling otherThread.join() pauses this thread 
until otherThread has completed its compute. 

join

Class which we extend to make threads to return a 
result of type V. compute returns V for this object

RecursiveTask<V>

Class we extend when we don’t return a resultRecursive Action

Object that manages threadsForkJoinPool

Pool method to start first thread object.invoke

…
protected Integer compute(){

if(hi-lo < cutoff){
int ans=0;
for(int i=lo; i<hi; i++)

ans += arr[i];
return new Integer(ans);

}
else{

SumThread left = new SumThread(arr, lo, (hi+lo)/2);
SumThread right = new SumThread(arr, (hi+lo)/2, hi);
left.fork(); 
Integer rightAns = right.compute();
Integer leftAns = left.join(); 
return newInteger(leftAns + rightAns);

} 
} 

…

14

19



5/16/2025

2

Reduce
It shouldn’t be too hard to imagine how to modify this code to:

1. Find the maximum element in an array.
2. Determine if there is an element meeting some property.
3. Find the left-most element satisfying some property.
4. Count the number of elements meeting some property.
5. Check if elements are in sorted order.
6. [And so on…]

Useful Diagram

One node per 
O(1) operation

What does the 
dependency 
graph look like for 
that snippet?

01: x=x+5
02: y=x+7
03: z=x+13

22

30


