
Intro to Parallelism CSE 332 25Sp

Lecture 19

Announcements

Bring Laptops to section tomorrow!

Optional readings (Grossman) covers next few weeks of parallelism and
concurrency

Monday Tuesday Wed Thursday Friday

This

Week
Ex 7 (DFS, coding) due

Ex 9 (reductions, gs) out

TODAY Bring

laptop!

Ex 8 (Dijkstra, gs) due

Ex 10,11 (parallel prog)

out

Next

Week
Ex 9 (reductions, gs) due Ex 10 (parallel, prog)

due

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

Parallelism & Concurrency

All of your programs have made the same assumption

One thing happens at a time

Usually called “sequential programming”

Over the next two weeks we’ll remove this assumption
-Write programs that divide work between multiple threads and synchronize their
behavior

-Design algorithms to provide a speedup

-More throughput: work done per unit time

-Data structures decide how to allow concurrent access to data among all the
threads.

Why are we doing this?

Parallelism is where computation is heading.

From 1980-2005 (ish) desktop computers got twice as fast every 18
months or so.
-Moore’s Law. Not an immutable law of nature. Business decision.

-How? Keep making everything smaller

Code not running fast enough? It’ll be four times as fast if you just buy a
new computer.

Why are we doing this?

End of Moore’s Law

We’re at the limit of our ability to shrink processors.
-Transistors are really small (much smaller and quantum mechanics kicks in)

-and get really hot.

Computer Architects are working very hard to still speed up processors
just a little bit more.
-Take an architecture class to get a taste.

But to really achieve a speedup, the solution has been more processors.

Why are we doing this?

Parallelism is where the world is heading.

Our computers are still getting faster by adding more processors
-Rather than just making each new one twice as fast.

If we want to solve new, bigger problems, we’re going to need to take
advantage of more than one processor.

We won’t forget about sequential/single processor programming.
-It will still be simpler and good enough most of the time.

But understanding parallelism is more important than ever.

Parallelism vs. Concurrency

Parallelism: Use extra resources (i.e. processors) to solve your problem
faster

Concurrency: Correctly and efficiently sharing a single resource among
multiple threads.

Terms aren’t completely standard.

They overlap somewhat.

Analogies

Cooking:

Parallelism (do one job faster with more power):

I have hundreds of potatoes to slice.

Get 20 extra cooks (and knives)

Hand them all a bunch of potatoes

Concurrency (manage shared resources):

10 cooks are trying to share 4 burners

And one oven

Examples

Parallelism:

I want to sum up all the elements in an array

Divide the array in 4, sum up each piece in a different thread

Add together the threads’ answers for the final answer

Concurrency:
Two users are trying to add an entry to a hash table at the same time.

What if the hashes collide? What if they’re the same key and different
values?

Sharing Memory with Threads

Our parallelism model will be shared memory with threads.
-There are other models (see Grossman), we won’t use them.

Sequential Story:
-One program counter

-One call stack

-new Objects go in the heap

Parallel Story
-Set of threads. Each has its own program counter and its own stack

-Threads will (implicitly) share objects and static fields

-Threads communicate by altering memory.

Sequential Code

PC

local

vars

Heap memory

Objects

Data Structures

Parallel Code

PC

local

vars
PC

local

vars

PC

local

vars

Heap memory

Objects

Data Structures

We need new primitives

To write parallel programs we need a library with:

Ways to create and run multiple things at once

-i.e. threads

Ways for threads to share memory
-Usually just having the same references

Ways for threads to coordinate
-This week: A way for threads to wait for others to finish

-Next week: prevent others from accessing memory until we’re done

For Today

We’ll only write pseudocode (we’ll introduce the library soon)

Parallelism requires a different mode of thinking

Just going to practice that on an example problem

A Simple Problem

Goal: Given an array, sum up all the elements.

First idea: Start up 4 threads. Each sums ¼ of the array.

Then add together those answers.

ParallelSum: Take 1 (not correct)

Class SumThread extends SomeThreadObject{

 int lo; int hi; int[] arr;

 int ans = 0; //result

 SumThread(int[] a, int l, int h){

 lo = l; hi=h; arr=a;

 }

 void run(){

 for(i=lo; i<hi; i++)

 ans+=arr[i];

 }

}

ParallelSum: Take 1

int sum(int[] arr){

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i<4; i++)

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 for(int i=0; i<4; i++)

 ans += ts[i].ans;

 return ans;

}

There are major bugs with this code.

Find some of them!

Bugs

We made some Thread objects…

-but we never actually started them. They’re just sitting there.

-Be careful what method you call!

-Libraries will have different methods for

-“look at this thread object, run the code IN YOURSELF not in that
thread.”

-“look at this object, tell THAT THREAD to run its code.”

ParallelSum: Take 2

int sum(int[] arr){

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i<4; i++)

 ts[i] = new SumThread(arr, i*len/4 (i+1)*len/4);

 ts[i].fork();

 for(int i=0; i<4; i++)

 ans += ts[i].ans;

 return ans;

}

Bugs

We made some Thread objects…
-but we never actually started them. They’re just sitting there.

-Be careful what method you call!

-Libraries will have different methods for

- “look at this thread object, run the code IN YOURSELF not in that thread.”

- “look at this object, tell THAT THREAD to run its code.”

The current thread is still running.

Will each thread update its ans field in time?

Need to tell original thread to WAIT for its children to finish.

ParallelSum: Take 2
int sum(int[] arr){

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i<4; i++)

 ts[i] = new SumThread(arr, i*len/4 (i+1)*len/4);

 ts[i].fork()

 for(int i=0; i<4; i++)

 ts[i].join()

 ans += ts[i].ans;

 return ans;

}

Join

Parallelism libraries will define methods you can’t implement on your
own.
-E.g. whatever method starts a new thread isn’t something you can do yourself.

Join is our first taste of coordinating computation
-Calling thread “blocks” (just sits there doing nothing) until receiver returns

-Avoids race condition in our original code.

This style of programming is called “fork/join”
-Java note: join in java.lang.string can throw exceptions. May not compile unless
you catch a java.lang.InterruptedException

-A simple try-catch block should be fine for simple code.

-Our default library doesn’t have that requirement.

(Almost) No Shared Memory!

Fork/join programs like these don’t really share memory

We divided up the array – no one tried to access the same locations.

Lo, hi, arr fields weren’t shared. Each helper thread had those values
written by the main thread.

Main thread gets data back – doesn’t let the helper threads alter any
shared data themselves.

To avoid race conditions, we’ll use join

Next week, we’ll see other ways to synchronize.

Optimizations

Optimizing: Number of Threads

The last version of ParallelSum will work.

I.e. it will always get the right answer

And it will use 4 threads.

But…

What if we get a new computer with 6 processors?
-We’ll have to rewrite our code

What if the OS decides “no, you only get 2 processors right now.”

What if our threads take wildly different amounts of time?

Optimizing: Number of Threads

The counter-intuitive solution:

Even more parallelism!

Divide the work into more smaller pieces.

If you get more processors, you take advantage of all of them.

If one thread finishes super fast, throw the next thread to that processor.

 “Load Imbalance”

Engineering Question:

-Let’s say we change our ParallelSum code so each thread adds 10
elements.

-Is that a good idea? What’s the running time of the code going to be?

Thread Creation

If we create 𝑛/10 threads, each summing 10 elements…

Creating 𝑛/10 threads one-right-after-the-other takes Θ(𝑛) time.

(Same with joining the threads together at the end).

This is a linear time algorithm now. Can we do better?

Divide and Conquer: Parallelism

What if we want a bunch of threads, but don’t want to spend a bunch of
time making threads?

Parallelize thread creation too!

Divide and Conquer SumThread

Class SumThread extends SomeThreadObject{

 //constructor, fields unchanged.

 void run(){

 if(hi-lo == 1)

 ans = arr[lo]

 else{

 SumThread left = new SumThread(arr, lo, (hi+lo)/2);

 SumThread right = new SumThread(arr, (hi+lo)/2, hi);

 left.start(); right.start();

 left.join(); right.join();

 ans = left.ans + right.ans;

 }

 }

}

Divide And Conqure SumThread

int sum(int[] arr){

 SumThread t = new SumThread(arr, 0, arr.length);

 t.run(); //this call isn’t making a new thread

 return t.ans;

}

Divide And Conquer Optimization

Imagine calling our current algorithm on an array of size 4.

How many threads does it make

6

It shouldn’t take that many threads to add a few numbers.

And every thread introduces A LOT of overhead.

We’ll want to cut-off the parallelism when the threads cause too much
overhead.

Similar optimizations can be used for (sequential) merge and quick sort

Cut-offs

Are we really saving that much?

Suppose we’re summing an array of size 230

And we set a cut-off of size-100
-i.e. subarrays of size 100 are summed without making any new threads.

What fraction of the threads have we just eliminated?

99% !!!! (for fun you should check the math)

One more optimization

A small tweak to our code will eliminate half of our threads

Old
SumThread left = new SumThread(arr, lo, (hi+lo)/2);

SumThread right = new SumThread(arr, (hi+lo)/2, hi);

left.start(); right.start();

left.join(); right.join();

Better
SumThread left = new SumThread(arr, lo, (hi+lo)/2);

SumThread right = new SumThread(arr, (hi+lo)/2, hi);

left.start();

right.run();

left.join();

Order of these lines

matters!

Wrap Up

None of our optimizations will make a difference in the O() analysis
-Which we’ll see next time

But they will make a difference in practice.

Next Time:
Using a real library

Analyzing parallel programs.

ForkJoin Framework

Method Use

compute Thread objects override (void) method run

When fork() is called, run() method is executed

A bit like main(String[] args)---default starting point

fork Starts a new thread executing that object’s run

method

join Calling otherThread.join() pauses this thread

until otherThread has completed its run method.

RecursiveTask<V> Class which we extend to make threads

	Slide 1: Intro to Parallelism
	Slide 2: Announcements
	Slide 3: Parallelism & Concurrency
	Slide 4: Why are we doing this?
	Slide 5: Why are we doing this?
	Slide 6: Why are we doing this?
	Slide 7: Parallelism vs. Concurrency
	Slide 8: Analogies
	Slide 9: Examples
	Slide 10: Sharing Memory with Threads
	Slide 11: Sequential Code
	Slide 12: Parallel Code
	Slide 13: We need new primitives
	Slide 14: For Today
	Slide 15: A Simple Problem
	Slide 16: ParallelSum: Take 1 (not correct)
	Slide 17: ParallelSum: Take 1
	Slide 18: Bugs
	Slide 19: ParallelSum: Take 2
	Slide 20: Bugs
	Slide 21: ParallelSum: Take 2
	Slide 22: Join
	Slide 23: (Almost) No Shared Memory!
	Slide 24: Optimizations
	Slide 25: Optimizing: Number of Threads
	Slide 26: Optimizing: Number of Threads
	Slide 27: Thread Creation
	Slide 28: Divide and Conquer: Parallelism
	Slide 29: Divide and Conquer SumThread
	Slide 30: Divide And Conqure SumThread
	Slide 31: Divide And Conquer Optimization
	Slide 32: Cut-offs
	Slide 33: One more optimization
	Slide 34: Wrap Up
	Slide 35: ForkJoin Framework

