Weighted Graphs Take 2

Can we reduce "Shortest Paths on a weighted graph" to "shortest paths on an unweighted graph"?

I.e., someone wrote you a library function UnweightedSP can you use that to find the shortest paths in a weighted graph?

UnweightedSP probably does BFS...but we're not going to care exactly how it does what it does (just that it does it correctly).

Reduce 3-coloring to 4-coloring

Let's reduce 3-coloring to 4-coloring

3-coloring

Input: Undirected Graph G

Output: True if the vertices of G can be labeled with red, green, and blue so that no edge has both of its endpoints colored the same color. False if it cannot.

4-coloring

Input: Undirected Graph G

Output: True if the vertices of G can be labeled with red,green, blue, and orange so that no edge has both of its endpoints colored the same color. False if it cannot.

(t

0.6

0.97

0.2

Another Application of Shortest Paths

Let each edge's weight be the probability a message is sent successfully across the edge.

What's the probability we get our message all the way across a path? -It's the product of the edge weights.

We only know how to handle sums of edge weights.

Is there a way to turn products into sums?

32

