
Shortest Paths CSE 332 25Sp

Lecture 17

Announcements

Monday Tuesday Wed Thursday Friday

This

Week
TODAY

Ex 6 (sorting, gs) due

Ex 8 (Dijkstra, gs) out

Next

Week
Ex 7 (DFS, prog) due

Ex 9 (reductions, gs) out

Ex 8 due

Ex 10 (parallel, prog)

Midterm exam grades are out.

Post coming early next week to give context (“how am I doing so far”)

Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.neighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

Breadth First Search

F

B

C

D

A

E

G

H

I

J

search(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.neighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

What’s the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: 𝑂(|𝑉| + |𝐸|)

Extra Practice
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.outneighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

Extra Practice
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.outneighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

Correct order: s,u,v,y,x,w,t

Shortest Paths

How does Google Maps figure out this is the fastest way to get from
Kane Hall to CSE?

Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and
edges?

Representing Maps as Graphs

K

R

D

P

H
S

4

1 2

2

4

3

5

Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Unweighted Graphs

Let’s start with a simpler version: the edges are all the same weight

If the graph is unweighted, how do we find a shortest paths?

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

s t

v

u

y

w

x

What’s the shortest path from s to s?
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, for length 2 path, have to go through u or v.

Unweighted Graphs: Key Idea
To find the set of vertices at distance k, just find the set of vertices at
distance k-1, and check for outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!
bfsShortestPaths(graph G, vertex source)

 toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

 while(toVisit is not empty){

 current = toVisit.dequeue()

 for (v : current.outNeighbors()){

 if (v is not yet visited){

 v.distance = current.distance + 1

 v.predecessor = current

 toVisit.enqueue(v)

 mark v as visited

 }

 }

 }

Unweighted Graphs

Use BFS to find shortest paths in this graph.

bfsShortestPaths(graph G, vertex source)

 toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

 while(toVisit is not empty){

 current = toVisit.dequeue()

 for (v : current.outNeighbors()){

 if (v is not yet visited){

 v.distance = current.distance + 1

 v.predecessor = current

 toVisit.enqueue(v)

 mark v as visited

 }

 }

 }

s t

v

u

y

w

x

Unweighted Graphs

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source)

 toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

 while(toVisit is not empty){

 current = toVisit.dequeue()

 for (v : current.outNeighbors()){

 if (v is not yet visited){

 v.distance = current.distance + 1

 v.predecessor = current

 toVisit.enqueue(v)

 mark v as visited

 }

 }

 }

Use BFS to find shortest paths in this graph.

What about the target vertex?

BFS didn’t mention a target vertex…

It actually finds the shortest path from s to every other vertex.

If you know your target, you can stop the algorithm early, when the

target is removed from the queue.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem

Weighted Graphs

Each edge should represent the “time” or “distance” from one vertex to
another.

Sometimes those aren’t uniform, so we put a weight on each edge to
record that number.

The length (or “weight” or “cost”) of a path in a weighted graph is the
sum of the weights along that path.

Weighted Graphs: Take 1

BFS works if the graph is unweighted.

Maybe it just works for weighted graphs too?

s tv

w

u
1

20

1

1 1

x
1

Weighted Graphs: Take 1

BFS works if the graph is unweighted.

Maybe it just works for weighted graphs too?

s tv

w

u

What went wrong?

When we found a shorter path from s to u,

we needed to update the distance to v

but BFS doesn’t do that.

1

20

1

1 10

∞

∞ ∞ ∞

x
∞11

20 21

2

223

Weighted Graphs: Take 2

We can’t just run BFS on a weight graph.

Instead figure out why BFS worked in the unweighted case,
try to make the same thing happen in the weighted case.

How did we avoid this problem:

s
tv

w

u

1

20

1

1 10 3

x

11

21

2

22

Weighted Graphs: Take 2

In BFS When we used a vertex u to update shortest paths we already
knew the exact shortest path to u.

So we never ran into the update problem

If we process the vertices in order of distance from s, we have a chance.

Weighted Graphs: Take 2

Goal: Process the vertices in order of distance from s

Idea:

Have a set of vertices that are “known”

-(we know at least one path from s to them).

Record an estimated distance

-(the best way we know to get to each vertex).

If we process only the vertex closest in estimated distance, we won’t
ever find a shorter path to a processed vertex.
-This statement is the key to proving correctness.

-It’s nice if you want to practice induction/understand the algorithm better.

Dijkstra’s Algorithm

s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s

w

x

u

v

t

Dijkstra(Graph G, Vertex source)

 initialize distances to ∞

 mark source as distance 0

 mark all vertices unprocessed

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex

 foreach(edge (u,v) leaving u){

 if(u.dist+weight(u,v) < v.dist){

 v.dist = u.dist+weight(u,v)

 v.predecessor = u

 }

 }

 mark u as processed

 }

Dijkstra’s Algorithm

Dijkstra(Graph G, Vertex source)

 initialize distances to ∞

 mark source as distance 0

 mark all vertices unprocessed

 while(there are unprocessed vertices){

 let u be the closest unprocessed vertex

 foreach(edge (u,v) leaving u){

 if(u.dist+weight(u,v) < v.dist){

 v.dist = u.dist+weight(u,v)

 v.predecessor = u

 }

 }

 mark u as processed

 }
s tv

w

u
1

20

1

1 1

x
1

Vertex Distance Predecessor Processed

s 0 -- Yes

w 1 s Yes

x 2 w Yes

u 20 3 s x Yes

v 4 u Yes

t 5 v Yes

Implementation Details

One of those lines of pseudocode was a little sketchy

> let u be the closest unprocessed vertex

What ADT have we talked about that might work here?

Minimum Priority Queues!

Making Minimum Priority Queues Work

They won’t quite work “out of the box”.

We need the “updatePriority” method,
which means we need the
itemToIndex dictionary (like Ex 2).
-We’ll ignore the updates to the dictionary,
but it’ll be in that method.

Min Priority Queue ADT

removeMin() – returns and removes

element with the smallest priority

state

behavior

Set of comparable values

- Ordered by “priority”

peek() – find the element with the

smallest priority

insert(value) – add new element to

collection

updatePriority(e, p) – changes

priority of element e to p.

Running Time Analysis
Dijkstra(Graph G, Vertex source)

 initialize distances to ∞, source.dist to 0

 mark all vertices unprocessed

 initialize MPQ as a Min Priority Queue

 add source at priority 0

 while(MPQ is not empty){

 u = MPQ.removeMin()

 foreach(edge (u,v) leaving u){

 if(u.dist+weight(u,v) < v.dist){

 if(v.dist == ∞) //if v not in MPQ

 MPQ.insert(v, u.dist+weight(u,v))

 else

 MPQ.updatePriority(v, u.dist+weight(u,v))

 v.dist = u.dist+weight(u,v)

 v.predecessor = u

 }

 }

 mark u as processed

 }

Negative Edge Weights

Negative Edge Weights

What’s the shortest way to get from s to t?

s t

w

u

v

3

2
-5

2
-2

s, u,v,w, u,v,w, u,v,w, …

There is no shortest way. You can always go around u,v,w once more.

If there’s a negative weight cycle shortest paths are undefined.

Undefined means “there is no correct answer” (or “−∞ is the closest thing

to a correct answer”)

Negative Edge Weights

If there are negative edge weights, but no negative weight cycle,
shortest paths are still defined.

For today we’ll assume all of the weights are positive

-For GoogleMaps that definitely makes sense.

-Sometimes negative weights make sense.

-Dijkstra’s algorithm doesn’t work for those graphs

-There are other algorithms that do work (ask Robbie later)

One more Graph Algorithm

Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Ordering Dependencies

Given a directed graph G, where we have an edge from u to v if u must
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right.

Topological Sort (aka Topological Ordering)

Uses:

Compiling multiple files

Graduating.

Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332

Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the

ordering.

More generally, if the only incoming edges are from vertices already in the

ordering, it’s safe to add.

How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

What’s the running time?

TopologicalSort(Graph G, Vertex source)

 count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 topOrder = new List()

 while(toProcess is not empty){

 u = toProcess.remove()

 topOrder.insert(u)

 foreach(edge (u,v) leaving u){

 v.edgesRemaining--

 if(v.edgesRemaining == 0)

 toProcess.insert(v)

 }

 }

Running Time: 𝑂(𝑉 + 𝐸)

Finding a Topological Ordering

Instead of counting incoming edges, you can actually modify DFS to
find you one (think about why).

But the “count incoming edges” is a bit easier to understand (for me ☺)

More Graph Applications

Another Application of Shortest Paths

Shortest path algorithms are obviously useful for GoogleMaps.

The wonderful thing about graphs is they can encode arbitrary
relationships among objects.

I don’t care if you remember all the details.

 I just want you to see that these algorithms have non-obvious
applications.

Another Application of Shortest Paths

Given: a directed graph G, where each edge weight is the probability

of successfully transmitting a message across that edge

Find: the path from s to t with maximum probability of message

transmission

Maximum Probability Path

I have a message I need to get from point s to point t.

But the connections are unreliable.

What path should I send the message along so it has the best chance of arriving?

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

Let each edge’s weight be the probability a message is sent successfully across the edge.

What’s the probability we get our message all the way across a path?
- It’s the product of the edge weights.

We only know how to handle sums of edge weights.

Is there a way to turn products into sums?

log 𝑎𝑏 = log 𝑎 + log 𝑏

s

u

v

t0.6

0.8

0.97

0.7

0.2

Another Application of Shortest Paths

We’ve still got two problems.

1. When we take logs, our edge weights become negative.

2. We want the maximum probability of success, but that’s the longest path not the shortest
one.

Multiplying all edge weights by negative one fixes both problems at once!

We reduced the maximum probability path problem to a shortest path problem by taking
− log() of each edge weight.

s

u

v

t-0.74

-0.32

-0.04

-0.51

-2.32

Maximum Probability Path Reduction

s

u

v

t0.74

0.32

0.04

0.51

2.32

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.6

0.8

0.97

0.7

0.2

s

u

v

t0.74

0.32

0.04

0.51

2.32

Weighted Shortest Paths

Transform Input

Transform Output

	Default Section
	Slide 1: Shortest Paths
	Slide 2: Announcements
	Slide 3: Breadth First Search
	Slide 4: Breadth First Search
	Slide 5: Extra Practice
	Slide 6: Extra Practice
	Slide 7: Shortest Paths
	Slide 8: Representing Maps as Graphs
	Slide 9: Representing Maps as Graphs
	Slide 10: Shortest Paths
	Slide 11: Shortest Paths
	Slide 12: Unweighted Graphs
	Slide 13: Unweighted Graphs
	Slide 14: Unweighted Graphs: Key Idea
	Slide 15: Unweighted Graphs
	Slide 16: Unweighted Graphs
	Slide 17: What about the target vertex?
	Slide 18: Weighted Graphs
	Slide 19: Weighted Graphs: Take 1
	Slide 20: Weighted Graphs: Take 1
	Slide 21: Weighted Graphs: Take 2
	Slide 22: Weighted Graphs: Take 2
	Slide 23: Weighted Graphs: Take 2
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm
	Slide 26: Implementation Details
	Slide 27: Making Minimum Priority Queues Work
	Slide 28: Running Time Analysis
	Slide 29
	Slide 30: Negative Edge Weights
	Slide 31: Negative Edge Weights
	Slide 32: Negative Edge Weights
	Slide 33: One more Graph Algorithm
	Slide 34: Ordering Dependencies
	Slide 35: Ordering Dependencies
	Slide 36: Topological Ordering
	Slide 37: Can we always order a graph?
	Slide 38: Ordering a DAG
	Slide 39: Ordering a DAG
	Slide 40: How Do We Find a Topological Ordering?
	Slide 41: What’s the running time?
	Slide 42: Finding a Topological Ordering
	Slide 43: More Graph Applications
	Slide 44: Another Application of Shortest Paths
	Slide 45: Another Application of Shortest Paths
	Slide 46: Another Application of Shortest Paths
	Slide 47: Another Application of Shortest Paths
	Slide 48: Maximum Probability Path Reduction

