‘ Breadth First Search

search (graph)
toVisit.enqueue (first vertex)

mark first vertex as visited (:) ()
while (toVisit is not empty)
current = toVisit.dequeue () (:j (:)
for (V : current.neighbors()) (:) (:)

if (v is not visited)

toVisit.enqueue (V) (:) (:) /
mark v as visited A (:)
finished.add (current) (:)

Current node: |

Queue: BDE CF GHI
Finished: ABDECF CH |

Edge Classification (DFS,directed graphs)

Tree Edges forming the v was not seen before we processed (u, v).
DFS tree (or forest).
Forward From ancestor to u and v have been seen, and
descendant in tree. u.start < v.start < v.end < u.end
Back From descendantto ~ u and v have been seen, and
ancestor in tree. v.start < u.start < u.end < v.end
Cross Edges going between u and v have not been seen, and
vertices without an v.start < v.end < u.start < u.end

ancestor relationship.

14

5/7/2025

Try it Yourselves!"=0E o

® Tree Edges forming the DFS tree v was not seen before we processed (u, v).
DESWra er (G) (or forest).
PP Forwar From ancestor to descendant ~ u and v have been seen, and
counter = 0 d in tree. u.start < v.start < v.end < u.end
For each vertex u of G Back From descendant to ancestor ~ u and v have been seen, and
in tree. v.start < u.start < u.end < v.end
. A\Y ”
If u is not seen Cross Edges going between vertices u and v have not been seen, and
DF'S (u) without an ancestor v.start < v.end < u.start < u.end
relationship.
End If
End For 0
DFS (u)
Mark u as “seen”
u.start = counter++ e G
For each edge (u,v) //leaving u
If v is not “seen”
DF'S (V) Q
End If o G
End For
u.end = counter++
16
TopologicalSort (Graph G, Vertex source)
count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach (Vertex v in G) {
if (v.edgesRemaining == 0)
toProcess.insert (v)
}
topOrder = new List()
while (toProcess is not empty) {
u = toProcess.remove ()
topOrder.insert (u)
foreach(edge (u,v) leaving u) {
v.edgesRemaining--
if (v.edgesRemaining == 0)
toProcess.insert (v)
}
}
39

5/7/2025

