
5/7/2025

1

Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D
A

E

G

H

I

J

A B

A
B E C

D
D F G

BDE
H

E

C

C

F

F

G

G
I

G

H

HI

I

search(graph) 
toVisit.enqueue(first vertex)
mark first vertex as visited

while(toVisit is not empty) 
current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited) 
toVisit.enqueue(v)

mark v as visited
finished.add(current)

Edge Classification (DFS,directed graphs)

When is (𝒖, 𝒗) that edge type?DefinitionEdge type
𝑣 was not seen before we processed 𝑢, 𝑣 .Edges forming the 

DFS tree (or forest).
Tree

𝑢 and 𝑣 have been seen, and
u.start < v.start < v.end < u.end

From ancestor to 
descendant in tree.

Forward

𝑢 and 𝑣 have been seen, and
v.start < u.start < u.end < v.end

From descendant to
ancestor in tree.

Back

𝑢 and 𝑣 have not been seen, and
v.start < v.end < u.start < u.end

Edges going between 
vertices without an 
ancestor relationship.

Cross

4

14



5/7/2025

2

Try it Yourselves!

DFS(u)
Mark u as “seen”
u.start = counter++
For each edge (u,v) //leaving u

If v is not “seen”
DFS(v)

End If
End For
u.end = counter++

DFSWrapper(G)
counter = 0
For each vertex u of G

If u is not “seen”
DFS(u)

End If
End For A

D

C

EF

B

When is (𝒖, 𝒗) that edge type?DefinitionType

𝑣 was not seen before we processed 𝑢, 𝑣 .Edges forming the DFS tree 
(or forest).

Tree

𝑢 and 𝑣 have been seen, and
u.start < v.start < v.end < u.end

From ancestor to descendant 
in tree.

Forwar
d

𝑢 and 𝑣 have been seen, and
v.start < u.start < u.end < v.end

From descendant to ancestor 
in tree.

Back

𝑢 and 𝑣 have not been seen, and
v.start < v.end < u.start < u.end

Edges going between vertices 
without an ancestor 
relationship.

Cross

How Do We Find a Topological Ordering?
TopologicalSort(Graph G, Vertex source) 

count how many incoming edges each vertex has
Collection toProcess = new Collection()
foreach(Vertex v in G){

if(v.edgesRemaining == 0)
toProcess.insert(v)

}
topOrder = new List() 
while(toProcess is not empty){

u = toProcess.remove()
topOrder.insert(u)
foreach(edge (u,v) leaving u){

v.edgesRemaining--
if(v.edgesRemaining == 0)

toProcess.insert(v)
}

}

16

39


