
Graph Search CSE 332 Spring 25

Lecture 16



What do we do with graphs

So many things!
-That’s why we said graphs are more general than a single ADT---they don’t have a 
standard set of operations.

As a starting point---how could we process the entire graph? Examine 
every vertex and every edge?

Called a “search” of the graph or a “traversal” 

Two algorithms (with different purposes)



BFS

Start somewhere…

For every vertex (in some order)

Do whatever you want on that vertex 
-Sometimes, record some information, store something in there, etc. 

-At least, we’ll mark it as having been “visited”

You need to process all of its neighbors…store them in some data 
structure to process them. Then back to the top of the loop.

If you use a Queue for your storage structure, you get BFS.



Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.neighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)



Breadth First Search

F

B

C

D

A

E

G

H

I

J

search(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.neighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)

What’s the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: 
𝑂(|𝑉|  +  |𝐸|)



Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

dfs(graph, curr) 

   mark curr as visited

   for(v : curr.neighbors()){

      if(v is not visited){

         dfs(graph, v)

      }

   }

   mark curr as “done”

bfs(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.neighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)



Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr) 

   mark curr as visited

   for(v : curr.neighbors()){

      if(v is not visited){

         dfs(graph, v)

      }

   }

   mark curr as “done”

Stack A; (A,B)

B;(B,C) 

C;(C,E) 

E;(E,D) 

D;(D,F) 

F 

F D

E;(E,H) 

H;(H,G) 

G H E C B A

G 



DFS

Running time?

-Same as BFS: Θ( 𝑉 + 𝐸 ) (i.e., Θ(𝑛 + 𝑚))

You can rewrite DFS to be an iterative method (that explicitly uses a 
stack data structure). Use that in place of the call stack.

Getting the details right is actually pretty annoying/subtle.

Next: Using BFS, DFS and other algorithms to solve problems!



DFS for applications

Applications for DFS (and BFS) are often:

Run [D/B]FS, and do some extra bookkeeping. 
-Many applications work (easily) with only one ordering.

For DFS, it’s common to classify based on “start” and “finish” times

When vertices go on the (call) stack, and when they come off. 



Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr) 

   mark curr as visited

   record curr.start

   for(v : curr.neighbors()){

      if(v is not visited){

         dfs(graph, v)

      }

   }

   mark curr as “done”

   record curr.end

Stack A; (A,B)

B;(B,C) 

C;(C,E) 

E;(E,D) 

D;(D,F) 

F 

F D

E;(E,H) 

H;(H,G) 

G H E C B A

G 

1

2

3

4

(A,B), (B,C), (C,E) cause a new vertex to 

go on the stack.

(E,B) goes “back” to an edge that’s 

already on the stack, but not finished.

56 7 8

9

10 11

12 13

14

15

16



What do we use DFS for?

DFS can be used to detect cycles

How? What happened when we went around a cycle---we had an edge 
“back” to a vertex we’d discovered already (but that we hadn’t finished 
processing).

What happened between “steps” 4 and 5?



Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr) 

   mark curr as visited

   record curr.start

   for(v : curr.neighbors()){

      if(v is not visited){

         dfs(graph, v)

      }

   }

   mark curr as “done”

   record curr.end

Stack A; (A,B)

B;(B,C) 

C;(C,E) 

E;(E,D) 

D;(D,F) 

F 

F D

E;(E,H) 

H;(H,G) 

G H E C B A

G 

1

2

3

4

(A,B), (B,C), (C,E) cause a new vertex to 

go on the stack.

(E,B) goes “back” to an edge that’s 

already on the stack, but not finished.



What do we use DFS for?

DFS can be used to detect cycles

How? What happened when we went around a cycle---we had an edge 
“back” to a vertex we’d discovered already (but that we hadn’t finished 
processing).

The details are different depending on if your graph is directed or 
undirected. Your exercise will use directed graphs, so let’s look at that.



Edge Classification (DFS,directed graphs)

Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the 

DFS tree (or forest).

𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to 

descendant in tree.

𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to 

ancestor in tree.

𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between 

vertices without an 

ancestor relationship.

𝑢 and 𝑣 have not been seen, and
v.start < v.end < u.start < u.end



Try it Yourselves!

DFS(u)

 Mark u as “seen”

 u.start = counter++

 For each edge (u,v) //leaving u

  If v is not “seen”

   DFS(v)

  End If

 End For

 u.end = counter++

DFSWrapper(G)

 counter = 0

 For each vertex u of G

  If u is not “seen”

   DFS(u)

  End If

 End For

A

D

C

EF

B

1 12

2 11

3 10

4 5

6 9

7 8

cross



Another Search Application



Breadth First Search

F

B

C

D

A

E

G

H

I

J

search(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.neighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)

What’s the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: 𝑂(|𝑉|  +  |𝐸|)



Extra Practice
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.outneighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)



Extra Practice
Run Breadth First Search on this graph starting from s.

What order are vertices placed on the queue?

When processing a vertex insert neighbors in alphabetical order.

In a directed graph, BFS only follows an edge in the direction it points.

s t

v

u x

w

y

bfs(graph) 

   toVisit.enqueue(first vertex)

 mark first vertex as visited

   while(toVisit is not empty) 

      current = toVisit.dequeue()

      for (V : current.outneighbors())

         if (v is not visited) 

            toVisit.enqueue(v)

     mark v as visited

      finished.add(current)

Correct order: s,u,v,y,x,w,t



Shortest Paths

How does Google Maps figure out this is the fastest way to get from 
Kane Hall to CSE? 



Representing Maps as Graphs

How do we represent a map as a graph? What are the vertices and 
edges?



Representing Maps as Graphs

K

R

D

P

H
S

4

1 2

2

4

3

5



Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem



Shortest Paths

s w

y

u

t

v x

1 4

1

5

4
2 5

6

3

The length of a path is the sum of the edge weights on that path.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem



Unweighted Graphs

Let’s start with a simpler version: the edges are all the same weight 

If the graph is unweighted, how do we find a shortest paths?



Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

s t

v

u

y

w

x

What’s the shortest path from s to s? 
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, for length 2 path, have to go through u or v.



Unweighted Graphs: Key Idea
To find the set of vertices at distance k, just find the set of vertices at 
distance k-1, and check for outgoing edge to an undiscovered vertex.

Do we already know an algorithm that does something like that?

Yes! BFS!
bfsShortestPaths(graph G, vertex source) 

   toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

   while(toVisit is not empty){

      current = toVisit.dequeue()

      for (v : current.outNeighbors()){

         if (v is not yet visited){

    v.distance = current.distance + 1

    v.predecessor = current

             toVisit.enqueue(v)

    mark v as visited

     }

  }

   }

      



Unweighted Graphs

Use BFS to find shortest paths in this graph.

bfsShortestPaths(graph G, vertex source) 

   toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

   while(toVisit is not empty){

      current = toVisit.dequeue()

      for (v : current.outNeighbors()){

         if (v is not yet visited){

    v.distance = current.distance + 1

    v.predecessor = current

             toVisit.enqueue(v)

    mark v as visited

     }

  }

   }

      

s t

v

u

y

w

x



Unweighted Graphs

s t

v

u

y

w

x

1

1

2

2

2

3

bfsShortestPaths(graph G, vertex source) 

   toVisit.enqueue(source)

 source.dist = 0

 mark source as visited

   while(toVisit is not empty){

      current = toVisit.dequeue()

      for (v : current.outNeighbors()){

         if (v is not yet visited){

    v.distance = current.distance + 1

    v.predecessor = current

             toVisit.enqueue(v)

    mark v as visited

     }

  }

   }

      

Use BFS to find shortest paths in this graph.



What about the target vertex?

BFS didn’t mention a target vertex…

It actually finds the shortest path from s to every other vertex.

If you know your target, you can stop the algorithm early, when the 

target is removed from the queue.

Given a directed graph and vertices s and t

Find: the shortest path from s to t.

Shortest Path Problem



One more Graph Algorithm



Problem 1: Ordering Dependencies

Today’s next problem: Given a bunch of courses with prerequisites, find 
an order to take the courses in.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332



Problem 1: Ordering Dependencies 

Given a directed graph G, where we have an edge from u to v if u must 
happen before v.

Can we find an order that respects dependencies?

Given: a directed graph G

Find: an ordering of the vertices so all edges go from left to right. 

Topological Sort (aka Topological Ordering)

Uses: 

Compiling multiple files

Graduating.



Topological Ordering

A course prerequisite chart and a possible topological ordering.

Math 126

CSE 142

CSE 143

CSE 311

CSE 331

CSE 332

Math 126 CSE 142 CSE 143 CSE 311 CSE 331 CSE 332



Can we always order a graph?

A graph has a topological ordering if and only if it is a DAG.

A directed graph without any cycles.

Directed Acyclic Graph (DAG)

A

B C

Can you topologically order this graph?



Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D



Ordering a DAG

Does this graph have a topological ordering? If so find one.

A

B

C

E

D

If a vertex doesn’t have any edges going into it, we can add it to the 

ordering.

More generally, if the only incoming edges are from vertices already in the 

ordering, it’s safe to add. 



How Do We Find a Topological Ordering?

TopologicalSort(Graph G, Vertex source) 

   count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

  if(v.edgesRemaining == 0)

   toProcess.insert(v)

   }

 topOrder = new List() 

 while(toProcess is not empty){

    u = toProcess.remove()

  topOrder.insert(u)

  foreach(edge (u,v) leaving u){

   v.edgesRemaining--

   if(v.edgesRemaining == 0)

    toProcess.insert(v)

  }

 }



What’s the running time?

TopologicalSort(Graph G, Vertex source) 

   count how many incoming edges each vertex has

 Collection toProcess = new Collection()

 foreach(Vertex v in G){

  if(v.edgesRemaining == 0)

   toProcess.insert(v)

   }

 topOrder = new List() 

 while(toProcess is not empty){

    u = toProcess.remove()

  topOrder.insert(u)

  foreach(edge (u,v) leaving u){

   v.edgesRemaining--

   if(v.edgesRemaining == 0)

    toProcess.insert(v)

  }

 }

Running Time: 𝑂( 𝑉 + 𝐸 )



Finding a Topological Ordering 

Instead of counting incoming edges, you can actually modify DFS to 
find you one (think about why).

But the “count incoming edges” is a bit easier to understand (for me ☺ )



What we’ve seen so far

Either BFS or DFS traverse a graph (if you’re careful about disconnected 
graphs).

BFS goes steadily through the graph
-Useful for computing shortest paths in unweighted graphs

DFS explores deep into the graph as long as the thing is new
-Useful for finding cycles

-And for other applications…

Next time: Another algorithm for finding shortest paths, but when you 
have a weighted graph.


	Slide 1: Graph Search
	Slide 2: What do we do with graphs
	Slide 3: BFS
	Slide 4: Breadth First Search
	Slide 5: Breadth First Search
	Slide 6: Depth First Search (DFS)
	Slide 7: Depth First Search
	Slide 8: DFS
	Slide 9: DFS for applications
	Slide 10: Depth First Search
	Slide 11: What do we use DFS for?
	Slide 12: Depth First Search
	Slide 13: What do we use DFS for?
	Slide 14: Edge Classification (DFS,directed graphs)
	Slide 15: Try it Yourselves!
	Slide 17: Another Search Application
	Slide 18: Breadth First Search
	Slide 19: Extra Practice
	Slide 20: Extra Practice
	Slide 21: Shortest Paths
	Slide 22: Representing Maps as Graphs
	Slide 23: Representing Maps as Graphs
	Slide 24: Shortest Paths
	Slide 25: Shortest Paths
	Slide 26: Unweighted Graphs
	Slide 27: Unweighted Graphs
	Slide 28: Unweighted Graphs: Key Idea
	Slide 29: Unweighted Graphs
	Slide 30: Unweighted Graphs
	Slide 31: What about the target vertex?
	Slide 32: One more Graph Algorithm
	Slide 33: Problem 1: Ordering Dependencies
	Slide 34: Problem 1: Ordering Dependencies 
	Slide 35: Topological Ordering
	Slide 36: Can we always order a graph?
	Slide 37: Ordering a DAG
	Slide 38: Ordering a DAG
	Slide 39: How Do We Find a Topological Ordering?
	Slide 40: What’s the running time?
	Slide 41: Finding a Topological Ordering 
	Slide 42: What we’ve seen so far

