
Graphs CSE 332 Spring 2025

Lecture 15

Announcements

Extra video coming soon on those two sorts we skipped.

See the extra slides (linked in the spec) for more details on Ex 7.

Monday Tuesday Wednesday Thursday Friday

This

Week

MIDTERM :O Ex 5 due

Ex 6 out

Next

Week

TODAY

Ex 7 out

Ex 6 due

Ex 8 out

ADTs so far

We’ve seen:

Queues and Stacks
-Our data points have some order we’re maintaining

Priority Queues
-Our data had some priority we needed to keep track of.

Dictionaries
-Our data points came as (key, value) pairs.

Graphs

Graphs are too versatile to think of them as only one ADT!

Graphs

Represent data points and the relationships between them.

That’s vague.

Formally:

A graph is a pair: G = (V,E)

V: set of vertices (aka nodes)

E: set of edges
-Each edge is a pair of vertices.

A

B

C

D

{𝐴, 𝐵, 𝐶, 𝐷}

{(𝐴, 𝐵), (𝐵, 𝐶), (𝐵, 𝐷), (𝐶, 𝐷)}

Making Graphs

If your problem has data and relationships, you might want to represent
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
-Those become your vertices.

Then think about how they’re related
-Those become your edges.

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.

Facebook friendships

Input data for the “6 degrees of Kevin Bacon” game

Course Prerequisites

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.
-Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Facebook friendships
-Vertices: people. Edges: if two people are friends

Input data for the “6 Degrees of Kevin Bacon” game
-Vertices: actors. Edges: if two people appeared in the same movie

-Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
-Vertices: courses. Edge: from a to b if a is a prereq for b.

More Graphs

We’ve already used graphs to represent things in this course:

A LOT

Solving Recurrences III

𝑐n2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

𝑐
n

16

2

… …… … …… … …… … …… … …… … …… … …… … …… … ……

5 5

Answer the following

questions:

1. What is input size on

level 𝑖?
2. Number of nodes at

level 𝑖?
3. Work done at

recursive level 𝑖?
4. Last level of tree?

5. Work done at base

case?

6. What is sum over all

levels?

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐
n

4

2

𝑐
n

4

2

𝑐
n

4

2
c

𝑛

4

2

c
𝑛

4

2

𝑐
𝑛

4

2

𝑐𝑛2

BuildHeap: Only One Possibility

But StartBottom() seems to work.

Does it always work?

3

31

78

12 4

6

7

6

31

8

1

7

7

2

Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6

a<b<c; a<c<b; b<a<c;

b<c<a; c<b<a; c<a<b

a<b<c; a<c<b; c<a<b b<a<c; b<c<a; c<b<a

a<b<c a<c<b; c<a<b b<c<a; c<b<ab<a<c

a<c<b c<a<b b<c<a c<b<a

Ask: is

a < b?

Ask: is

b<c?

Ask: is

a<c?

Ask: is

a<c?

Ask: is

b<c?

More Graphs

EVERYTHING was graphs.

The whole time.

They don’t just show up in data structures.

311: NFAs/DFAs and relations
Compilers: Use graphs to figure out valid compilation orders.

Networking: Building a graph
-To the point that some CS people call graphs “networks”

Circuits: represented as graphs

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.

Facebook friendships

Input data for the “6 Degrees of Kevin Bacon” game

Course Prerequisites

Some examples

For each of the following think about what you should choose for
vertices and edges.

The internet.
-Vertices: webpages. Edges from a to b if a has a hyperlink to b.

Facebook friendships
-Vertices: people. Edges: if two people are friends

Input data for the “6 Degrees of Kevin Bacon” game
-Vertices: actors. Edges: if two people appeared in the same movie

-Or: Vertices for actors and movies, edge from actors to movies they appeared in.

Course Prerequisites
-Vertices: courses. Edge: from a to b if a is a prereq for b.

Edges have

direction

Edges don’t

have direction

Edges have

direction

Graph Terms

Graphs can be directed or undirected.

Dan

Robbie

Dan

Robbie

Degree: 1

Degree: 0

Outdegree: 2

Indegree: 1

This graph is

disconnected.

Following on twitter.

Friendships on Facebook.

Graph Terms

Path – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Path–must follow the direction of the edges

Length – The number of edges in a path

 - (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a path.

So is A,B,A

A,B,C,D,A is a directed path.

A,B,A is not.

Graph Terms

Simple Path –path that doesn’t repeat a vertex. A,B,C,D is a simple path.

Simple Cycle – simple path with an extra edge from last vertex to first.

Be careful looking at other sources.

Some people call our “paths” “walks” and our “simple paths” “paths”

Use the definitions on these slides.

A B C D

A B C D

A,B,A is not.

Representing and Using Graphs

Adjacency Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an adjacency matrix a[u][v] is 1 if

there is an edge (u,v), and 0

otherwise.

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)

O(1)

O(1)

O(n)

O(n)

𝑂(𝑛2)

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5
0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the u’th element contains a list of

neighbors of u.

Directed graphs: put the out neighbors (a[u] has v

for all (u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)
O(d)

O(d)

O(d)

O(n + m)

O(n + m)

Suppose we use a

linked list for each

node.

Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5
0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the u’th element contains a list of

neighbors of u.

Directed graphs: put the out neighbors (a[u] has v

for all (u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge:

Remove Edge:

Check edge exists from (u,v):

Get neighbors of u (out):

Get neighbors of u (in):

Space Complexity:

O(1)
O(1)

O(1)

O(n)

O(n)

O(n + m)

Switch the linked lists to

hash tables, and do

average case analysis.

Which do we use?

If your graph is dense (Close to 𝑛2 edges) or the graph is changing a
lot, the adjacency matrix is usually the better choice.

Otherwise, adjacency list is the default choice:

-Memory savings are huge for the majority of “real world” graphs

-Most graphs are “sparse” (𝑂(𝑛) edges), think about a map (vertices are
intersections, edges are roads; most vertices touch 4 roads, not all of them).

-The running times look worse, but…

-If you make the graph class, you can just call the vertices 0,1,2,…n-1, which
mitigates bad hashing concerns if you use that approach.

-Most graph algorithms don’t actually use “is edge (a,b) there?” frequently; “iterate
over all the edges” is much more common, which linked list does in O(1) time.

Which do we use?

Unless otherwise noted, assume we are using adjacency list.

For the problems in this class, it’s usually best to design assuming the
operation you need will turn out to be constant time…and then check at
the end which data structures will let you do that.

Graph Search

What do we do with graphs

So many things!
-That’s why we said graphs are more general than a single ADT---they don’t have a
standard set of operations.

As a starting point---how could we process the entire graph? Examine
every vertex and every edge?

Called a “search” of the graph or a “traversal”

Two algorithms (with different purposes)

BFS

Start somewhere…

For every vertex (in some order)

Do whatever you want on that vertex
-Sometimes, record some information, store something in there, etc.

-At least, we’ll mark it as having been “visited”

You need to process all of its neighbors…store them in some data
structure to process them. Then back to the top of the loop.

If you use a Queue for your storage structure, you get BFS.

Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.neighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

Breadth First Search

F

B

C

D

A

E

G

H

I

J

search(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.neighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

What’s the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once: 𝑂(|𝑉| + |𝐸|)

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move in a different pattern? What if you used a stack instead?

dfs(graph, curr)

 mark curr as visited

 for(v : curr.neighbors()){

 if(v is not visited){

 dfs(graph, v)

 }

 }

 mark curr as “done”

bfs(graph)

 toVisit.enqueue(first vertex)

 mark first vertex as visited

 while(toVisit is not empty)

 current = toVisit.dequeue()

 for (V : current.neighbors())

 if (v is not visited)

 toVisit.enqueue(v)

 mark v as visited

 finished.add(current)

Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr)

 mark curr as visited

 for(v : curr.neighbors()){

 if(v is not visited){

 dfs(graph, v)

 }

 }

 mark curr as “done”

Stack A; (A,B)

B;(B,C)

C;(C,E)

E;(E,D)

D;(D,F)

F

F D

E;(E,H)

H;(H,G)

G H E C B A

G

DFS

Running time?

-Same as BFS: 𝑂(𝑉 + 𝐸)

You can rewrite DFS to be a recursive method.

Use the call stack as your stack.

No easy trick to do the same with BFS.

Next week: Using BFS, DFS and other algorithms to solve problems!

DFS for applications

Applications for DFS (and BFS) are often:

Run [D/B]FS, and do some extra bookkeeping.

For DFS, it’s common to classify based on “start” and “finish” times

When vertices go on the (call) stack, and when they come off.

Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr)

 mark curr as visited

 record curr.start

 for(v : curr.neighbors()){

 if(v is not visited){

 dfs(graph, v)

 }

 }

 mark curr as “done”

 record curr.end

Stack A; (A,B)

B;(B,C)

C;(C,E)

E;(E,D)

D;(D,F)

F

F D

E;(E,H)

H;(H,G)

G H E C B A

G

1

2

3

4

(A,B), (B,C), (C,E) cause a new vertex to

go on the stack.

(E,B) goes “back” to an edge that’s

already on the stack, but not finished.

Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr)

 mark curr as visited

 record curr.start

 for(v : curr.neighbors()){

 if(v is not visited){

 dfs(graph, v)

 }

 }

 mark curr as “done”

 record curr.end

Stack A; (A,B)

B;(B,C)

C;(C,E)

E;(E,D)

D;(D,F)

F

F D

E;(E,H)

H;(H,G)

G H E C B A

G

1

2

3

4

(A,B), (B,C), (C,E) cause a new vertex to

go on the stack.

(E,B) goes “back” to an edge that’s

already on the stack, but not finished.

56 7 8

9

10 11

12 13

14

15

16

	Slide 1: Graphs
	Slide 2: Announcements
	Slide 3: ADTs so far
	Slide 4: Graphs
	Slide 5: Graphs
	Slide 6: Making Graphs
	Slide 7: Some examples
	Slide 8: Some examples
	Slide 9: More Graphs
	Slide 10: Solving Recurrences III
	Slide 11: BuildHeap: Only One Possibility
	Slide 12: Are These AVL Trees?
	Slide 13
	Slide 14: More Graphs
	Slide 15: Some examples
	Slide 16: Some examples
	Slide 17: Graph Terms
	Slide 18: Graph Terms
	Slide 19: Graph Terms
	Slide 20: Representing and Using Graphs
	Slide 21: Adjacency Matrix
	Slide 22: Adjacency List
	Slide 23: Adjacency List
	Slide 24: Which do we use?
	Slide 25: Which do we use?
	Slide 26: Graph Search
	Slide 27: What do we do with graphs
	Slide 28: BFS
	Slide 29: Breadth First Search
	Slide 30: Breadth First Search
	Slide 31: Depth First Search (DFS)
	Slide 32: Depth First Search
	Slide 33: DFS
	Slide 34: DFS for applications
	Slide 35: Depth First Search
	Slide 36: Depth First Search

