
Comparisons Sorts CSE 332 Spring 2025

Lecture 13

Announcements

Don’t discuss midterm yet (makeups happening next week)

We’ll release solutions once everyone has taken it.

Sorting exercise (re-)hidden, it’ll be out tonight

Monday Tuesday Wednesday Thursday Friday

This

Week

MIDTERM :O TODAY

Ex 5 due

Ex 6 out

Next

Week

Ex 7 out Ex 6 due

Three goals

Three things you might want in a sorting algorithm:

In-Place
-Only use 𝑂(1) extra heap memory.

-Sorted array given back in the input array.

Stable
-If a appears before b in the initial array and a.compareTo(b) == 0, then a appears
before b in the final array.

-Why? Imagine you sort an array by first name, then sort by last name. With a
stable sort you get a list sorted by full name! (With an unstable sort the “Smiths”
could go in any order).

Fast

Insertion Sort

for(i from 1 to n-1){

int index = i

while(a[index-1] > a[index]){

swap(a[index-1], a[index])

index = index-1

}

}

Selection Sort

Here’s another idea for a sorting algorithm:

Maintain a sorted subarray

While(subarray is not full array)

Find the smallest element remaining in the unsorted part.

-By scanning through the remaining array

Insert it at the end of the sorted part.

Running time 𝑂(𝑛2)

In-Place: Yes; Stable: Yes.

Heap Sort

Here’s another idea for a sorting algorithm:

Maintain a sorted subarray; Make the unsorted part a min-heap

While(subarray is not full array)

Find the smallest element remaining in the unsorted part.

-By calling removeMin on the heap

Insert it at the end of the sorted part.

Running time 𝑂(𝑛 log 𝑛)

Heap Sort (Better)

We’re sorting in the wrong order!

-Could reverse at the end.

Our heap implementation will implicitly assume that the heap is on the
left of the array.

Switch to a max-heap, and keep the sorted stuff on the right.

What’s our running time? 𝑂(𝑛 log 𝑛)

A Different Idea

So far our sorting algorithms:
-Start with an (empty) sorted array

-Add something to it.

Different idea: Divide And Conquer:

Split up array (somehow)

Sort the pieces (recursively)

Combine the pieces

Merge Sort Pseudocode

mergeSort(input) {

 if (input.length == 1)

 return

 else

 leftHalf = mergeSort(new [0, ..., mid])

 rightHalf = mergeSort(new [mid + 1, ...])

 return merge(leftHalf, rightHalf)

}

https://www.youtube.com/watch?v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo

How Do We Merge?

Turn two sorted lists into one sorted list:

Start from the small end of each list.

Copy the smaller into the combined list

Move that pointer one spot to the right.

3 5 12 15 27 30

3 15 27 5 12 30

Merge Sort Analysis

Running Time:

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐1𝑛 if 𝑛 ≥ 1

𝑐2 otherwise

This is a closed form you will have memorized by the end of the quarter.

The closed form is Θ(𝑛 log 𝑛).

Stable: yes! (if you merge correctly)

In place: no.

Quick Sort

Still Divide and Conquer, but a different idea:

Let’s divide the array into “big” values and “small” values
-And recursively sort those

What’s “big”?
-Choose an element (“the pivot”) anything bigger than that.

How do we pick the pivot?

For now, let’s just take the first thing in the array:

Swapping

How do we divide the array into “bigger than the pivot” and “less than
the pivot?”

1. Swap the pivot to the far left.

2.Make a pointer 𝑖 on the left, and 𝑗 on the right

3. Until 𝑖, 𝑗 meet
-While 𝐴 𝑖 < pivot move 𝑖 left

-While 𝐴 𝑗 > pivot move 𝑗 right

-Swap 𝐴 𝑖 , 𝐴[𝑗]

4. Swap A[i] or A[i-1] with pivot.

Swapping

0 1 2 3 4 5 6 7 8 9

8 3 5 6 9 1 4 7 2 10

0 1 2 3 4 5 6 7 8 9

8 3 5 6 2 1 4 7 9 10

𝑖, 𝑗 met. 𝐴[𝑖] is larger than the pivot, so it belongs on the right,

but 𝐴[𝑖 − 1] belongs on the left. Swap pivot and 𝐴 𝑖 − 1 .
0 1 2 3 4 5 6 7 8 9

7 3 5 6 2 1 4 8 9 10

Quick Sort
0 1 2 3 4 5 6

20 50 70 10 60 40 30

0 1 2 3 4

50 70 60 40 30

0

10

0 1

40 30

0 1

70 60

0

30

0

60

0 1

30 40

0 1

60 70

0 1 2 3 4

30 40 50 60 70

0 1 2 3 4 5 6

10 20 30 40 50 60 70

https://www.youtube.com/watch?v=ywWBy6J5gz8

https://www.youtube.com/watch?v=ywWBy6J5gz8

Quick Sort Analysis (Take 1)

What is the best case and worst case for a pivot?

-Best case:

-Worst case:

Recurrences:

Best:

Worst:

Running times:

-Best:

-Worst:

Quick Sort Analysis (Take 1)

What is the best case and worst case for a pivot?

-Best case:

-Worst case:

Recurrences:

Best:

Worst:

Running times:

-Best:

-Worst:

Picking the median

Picking the smallest or largest element

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐1𝑛 if 𝑛 ≥ 2

𝑐2 otherwise

𝑇 𝑛 = ൜
𝑇 𝑛 − 1 + 𝑐1𝑛 if 𝑛 ≥ 2
𝑐2 otherwise

𝑂(𝑛 log 𝑛)
𝑂(𝑛2)

Choosing a Pivot

Average case behavior depends on a good pivot.

Pivot ideas:

Just take the first element
-Simple. But an already sorted (or reversed) list will give you a bad time.

Pick an element uniformly at random.
-𝑂(𝑛 log 𝑛) running time with probability at least 1 − 1/𝑛2.

-Regardless of input!

-Probably too slow in practice :(

Find the actual median!
-You can actually do this in linear time

-Definitely not efficient in practice

Choosing a Pivot

Median of Three

-Take the median of the first, last, and midpoint as the pivot.

-Fast!

-Unlikely to get bad behavior (but definitely still possible)

-Reasonable default choice.

Quick Sort Analysis

Running Time:
-Worst 𝑂(𝑛2)

-Best 𝑂(𝑛 log 𝑛)

-Average 𝑂(𝑛 log 𝑛) (not responsible for the proof, talk to Robbie if you’re curious)

In place: Yes*

Stable: No.

*QuickSort does create Θ(log 𝑛) memory on the call-stack (maintaining
all the recursive calls). Our definition of in-place doesn’t count that
memory, there’s Θ(1) “heap” memory.

Constant Factors

Why is QuickSort called QuickSort---the worst case is slower than
mergesort!

The constant factors for QuickSort tend to be better on average.
Creating new memory is expensive, and it turns out that simple pivot
selection rules are VERY likely to avoid worst-case. It really is quick in
practice!!

Most practical implementations of recursive sorts set the base case
larger than 1, and run an iterative sort (e.g., insertion sort) instead.
-Creating a recursive call is actually pretty expensive---for n=10, say insertion sort is
probably faster.

-Big-O is same as the “main” sort, regardless of what you do for the base case.

Lower Bound

We keep hitting 𝑂(𝑛 log 𝑛) in the worst case.
-Merge Sort, Heap Sort, Quick Sort with a guaranteed good pivot

Can we do better?

Or is this 𝑂(𝑛 log 𝑛) pattern a fundamental barrier?

Without more information about our data set, we can do no better.

Any sorting algorithm which only interacts with its input by

comparing elements must take Ω(n log n) time in the worst-case.

Comparison Sorting Lower Bound

Decision Trees

Proving the lower-bound

Our proof will use something called a “decision-tree.”

It’s a diagram showing the decisions our code will make (think “if-else
branches”).

We’ll argue that any algorithm that takes 𝑜(𝑛 log 𝑛) time makes a
mistake.

Any sorting algorithm which only interacts with its input by

comparing elements must take Ω(n log n) time in the worst-case.

Comparison Sorting Lower Bound

Decision Trees

Suppose we have a size 3 array to sort.

We will figure out which array to return by comparing elements.

When we know what the correct order is, we’ll return that array.

In our real algorithm, we’re probably moving things around to make the
code understandable.

Don’t worry about that for the proof.

Whatever tricks we’re using to remember what’s big and small, it
doesn’t matter if we don’t look first!

a<b<c; a<c<b; b<a<c;

b<c<a; c<b<a; c<a<b

a<b<c; a<c<b; c<a<b b<a<c; b<c<a; c<b<a

a<b<c a<c<b; c<a<b b<c<a; c<b<ab<a<c

a<c<b c<a<b b<c<a c<b<a

Ask: is

a < b?

Ask: is

b<c?

Ask: is

a<c?

Ask: is

a<c?

Ask: is

b<c?

Complete the Proof

How many operations can we guarantee in the worst case?

How tall is the tree if the array is length 𝑛?

What’s the simplified Ω() ?

Complete the Proof

How many operations can we guarantee in the worst case?

-Equal to the height of the tree.

How tall is the tree if the array is length 𝑛?
-One of the children has at least half of the possible inputs.

-What level can we guarantee has an internal node? log2(𝑛!)

What’s the simplified Ω() ?

 log2(𝑛!) = log2 𝑛 + log2(𝑛 − 1) + log2 𝑛 − 2 + ⋯ + log2(1)

 ≥ log2
𝑛

2
+ log2

𝑛

2
+ ⋯ + log2

𝑛

2
 (only 𝑛/2 copies)

≥
𝑛

2
log2

𝑛

2
= 𝑛/2(log2 𝑛 − 1) = Ω(𝑛 log 𝑛)

Takeaways

A tight lower bound like this is very rare.

This proof had to argue about every possible algorithm

-that’s really hard to do.

We can’t come up with a more clever recurrence to sort faster.

This theorem actually says things about data structures, too!

-You’ll prove it yourselves in an upcoming exercise.

Unless we make some assumptions about our input.

And get information without doing the comparisons.

Wrap-up

Summary

You have a bunch of data. How do you sort it?

Honestly…use your language’s default implementation
-It’s been carefully optimized.

Unless you really know something about your data, or the situation your
in
-Not a lot of extra memory? Use an in-place sort.

-Want to sort repeatedly to break ties? Use a stable sort.

-Know your data all falls into a small range? Bucket (or maybe Radix) sort.

Sort Best-Case Average-Case Worst-Case In-Place? Stable? Other Notes

Insertion Θ(𝑛) Θ(𝑛2) Θ(𝑛2) Yes Yes Common choice for small 𝑛 or

structured (maybe already

sorted) data

Selection 𝑂(𝑛2) Θ(𝑛2) Θ(𝑛2) Yes Yes Many comparisons, but few

swaps…mostly educational

purposes not practical

Heap Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Yes No Best-Case analysis assumes

elements are distinct.

Merge Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) No Yes Common choice when reliability

is key, or stability is needed.

Quick Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Yes No Common default choice due to

great constant factors

Bucket Θ(𝑛 + 𝑚) Θ(𝑛 + 𝑚) Θ(𝑛 + 𝑚) No Yes Only works when all entries are

ints between 0 and 𝑚; non-

comparison based.

Radix Θ(𝑛 𝑟 + 𝑑) Θ(𝑛 𝑟 + 𝑑) Θ(𝑛 𝑟 + 𝑑) No Yes Only works when entries are 𝑑

digits long in base 𝑟. non-

comparison based.

Non-Comparison Sorts

Avoiding the Lower Bound

Can we avoid using comparisons?

In general, probably not.
-If you’re trying to write the most general code, definitely not.

But what if we know that all of our data points are small integers?

Bucket Sort (aka Bin Sort)

4 3 1 2 1 1 2 3 4 2

1 2 3 4

3 3 2 2

1 1 1 2 2 2 3 3 4 4

Bucket Sort

Running time?

If we have 𝑚 possible values and an input array of size 𝑛?
 𝑂 𝑚 + 𝑛 .

How are we beating the lower bound?

When we place an element, we implicitly compare it to all the others in
𝑂 1 time!

Radix Sort

For each digit (starting at the ones place)
-Run a “bucket sort” with respect to that digit

-Keep the sort stable!

Radix Sort: Ones Place

012 234 789 555 679 200 777 562

0 2 4 5 7 9

200

562

234 555 777 789

679

012

200 012 562 234 555 777 789 679

Radix Sort by Ones

Place

Keep Stable: Later

elements go at

end of linked list

Copy back in new

order.

Radix Sort: Tens Place

0 1 2 3 5 6 7 8

200 562234 555 777 789

679

012

200 012 562 234 555 777 789 679

200 012 234 555 562 777 679 789

Radix Sort by Tens

Place

Keep Stable: Later

elements go at

end of linked list

Copy back in new

order. Sorted by

tens, then ones.

Radix Sort: Hundreds Place

0 2 5 6 7

200

562234

555 777

789

679012

012 200 234 555 562 679 777 789

200 012 234 555 562 777 679 789

Radix Sort

Key idea: by keeping the sorts stable, when we sort by the hundreds
place, ties are broken by tens place (then by ones place).

Running time? 𝑂((𝑛 + 𝑟)𝑑)

Where 𝑑 is number of digits in each entry,

𝑟 is the radix, i.e. the base of the number system.

How do we avoid the lower bound?
-Same way as bucket sort, we implicitly get free comparison information when we
insert into a bucket.

Radix Sort

When can you use it?

ints and Strings. As long as they aren’t too large.

	Slide 1: Comparisons Sorts
	Slide 2: Announcements
	Slide 3: Three goals
	Slide 4: Insertion Sort
	Slide 5: Selection Sort
	Slide 6: Heap Sort
	Slide 7: Heap Sort (Better)
	Slide 8: A Different Idea
	Slide 9: Merge Sort Pseudocode
	Slide 10: How Do We Merge?
	Slide 11: Merge Sort Analysis
	Slide 12: Quick Sort
	Slide 13: Swapping
	Slide 14: Swapping
	Slide 15: Quick Sort
	Slide 16: Quick Sort Analysis (Take 1)
	Slide 17: Quick Sort Analysis (Take 1)
	Slide 18: Choosing a Pivot
	Slide 19: Choosing a Pivot
	Slide 20: Quick Sort Analysis
	Slide 21: Constant Factors
	Slide 22: Lower Bound
	Slide 23: Decision Trees
	Slide 24: Proving the lower-bound
	Slide 25: Decision Trees
	Slide 26
	Slide 27: Complete the Proof
	Slide 28: Complete the Proof
	Slide 29: Takeaways
	Slide 30: Wrap-up
	Slide 31: Summary
	Slide 32
	Slide 33: Non-Comparison Sorts
	Slide 34: Avoiding the Lower Bound
	Slide 35: Bucket Sort (aka Bin Sort)
	Slide 36: Bucket Sort
	Slide 37: Radix Sort
	Slide 38: Radix Sort: Ones Place
	Slide 39: Radix Sort: Tens Place
	Slide 40: Radix Sort: Hundreds Place
	Slide 41: Radix Sort
	Slide 42: Radix Sort

