
Hash Tables II CSE 332 Fall 21

Lecture 12

Announcements

Outline

designing hash functions

Collision Resolution part II: Open Addressing

17,423
Hash

Function
17,423 23

Reaching the Average Case

In general our keys might not be integers.

Given an arbitrary object type E, how do we get an array index?

% TableSize

How do we make our assumption (keys are uniformly distributed) true?

Or at least true-ish?

Usually Object writer’s

responsibility

Usually HashTable

writer’s responsibility

Designing a Hash Function

For simplicity, let’s start with Strings.

Question: How many Strings are there compared to ints?

WAY more strings.

Can we always avoid collisions
-NO!

We can try to minimize them though.

Some Possible Hash Functions

For each of these hash functions, think about
-what Strings will cause collisions

-how long it will take to evaluate

Keys: strings of form 𝑠0𝑠1 … 𝑠𝑘−1 (𝑠𝑖 are chars in range [0,256])

ℎ 𝐾 = 𝑠0

ℎ 𝐾 = σ𝑖=0
𝑘−1 𝑠𝑖

A Better Hash Function

ℎ 𝐾 = σ𝑖=0
𝑘−1 𝑠𝑖 ⋅ 31𝑖

Can we do this fast? Avoid calculating 31𝑖 directly

for(i=k-1; i>=0;i--){

 h = 31*h + s[i];

}

Other Classes

Should we use that same hash function if the strings are all URLs?

Other Classes

Should we use that same hash function if the strings are all URLs?

No! “https://www.” Is worthless, use the rest of the string

Other Classes

Should we use that same hash function if the strings are all URLs?

No! “https://www.” Is worthless, use the rest of the string

Person Class

String name; Date birthdate; Integer socialSecurityNum

Tradeoff between speed and collision avoidance.

What to hash is often just an unprincipled guess.

General Principles

You have 32 bits, use them.

If you have multiple pieces, have the hashes stretch across bits

Bitwise xor if you have to combine (keeps #1s and #0s balanced)

DON’T DO THIS IF YOU DON’T HAVE TO

Rely on others to get this right if you can.

Java Specific Notes

Every object in Java implements the hashCode method.

If you define a new Object, and want to use a hash table, you might
want to override hashCode.

But if you do, you also need to override equals

Such that

If a.equals(b) then a.hashCode() == b.hashCode()

This is part of the contract. Other code makes this assumption!

What about the converse?

Can’t require it, but you should try to make it true as often as possible.

Java Specific Notes

Every object in Java implements the hashCode method.

If you define a new Object, and want to use a hash table, you might
want to override hashCode.

But if you do, you also need to override equals

Such that

If a.equals(b) then a.hashCode() == b.hashCode()

This is part of the contract. Other code makes this assumption!

What about the converse?

Can’t require it, but you should try to make it true as often as possible.

General Purpose hashCode()

int result = 17; // start at a prime

foreach field f

 int fieldHashcode =

 boolean: (f ? 1: 0)

 byte, char, short, int: (int) f

 long: (int) (f ^ (f >>> 32))

 float: Float.floatToIntBits(f)

 double: Double.doubleToLongBits(f), then above

 Object: object.hashCode()

 result = 31 * result + fieldHashcode;

return result;

Collision Resolution

Last time: Separate Chaining

when you have a collision, stuff everything into that spot

Using a data structure.

Today: Open Addressing

If the spot is full, go somewhere else.

Where?

How do we find the elements later?

Linear Probing

First idea: linear probing

h(key) % TableSize full?

Try (h(key) + 1) % TableSize.

Also full? (h(key) + 2) % TableSize.

Also full? (h(key) + 3) % TableSize.

Also full? (h(key) + 4) % TableSize.

…

Example

Insert the hashes: 38, 19, 8, 109, 10 into an empty hash table of size 10.

0 1 2 3 4 5 6 7 8 9

8 38109 10 19

How Does Delete Work?

Just find the key and remove it, what’s the problem?

How do we know if we should keep probing on a find?

Delete 109 and call find on 10.

If we delete something placed via probe we won’t be able to tell!

If you’re using open addressing, you have to use lazy deletion.

Example

Delete 109, find 10.

0 1 2 3 4 5 6 7 8 9

8 38109 10 19

It looks like we found a blank spot, so it looks like 10

couldn’t have been inserted (if we inserted 10 now, it

would be at index 1).

But it’s at index 2 because there used to be

something at index 1.

Not Found?

Example

Delete 109, find 10.

0 1 2 3 4 5 6 7 8 9

8 38109 10 19

When we delete, always mark the spot as “used to have

something here” (, lazy deletion)

Find will keep probing on data OR a .

(You can overwrite a with data on insert, but only once

you’re sure no other copies of the key are later on).

Found it!

How Long Does Insert Take?

If 𝜆 < 1 we’ll find a spot eventually.

What’s the average running time?

If find is unsuccessful:
1

2
1 +

1

1−𝜆 2

If find is successful:
1

2
1 +

1

(1−𝜆)

We won’t prove these (they’re not even in the textbook)
-Ask Robbie for references if you’re really interested.

for any pair of elements x,y

the probability that h(x) = h(y) is
1

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

Uniform Hashing Assumption

When to Resize

We definitely want to resize before

𝜆 gets close to 1.

Taking 𝜆 = 0.5 as a resize point

probably avoids the bad end of this

curve.

Remember these are the average

find times.

Even under UHA, the worst possible

find is a bit worse than this with

high probability.

Why are there so many probes?

The number of probes is a result of primary clustering

If a few consecutive spots are filled,

Hashing to any of those spots will make more consecutive filled spots.

Quadratic Probing

Want to avoid primary clustering.

If our spot is full, let’s try to move far away relatively quickly.

h(key) % TableSize full?

Try (h(key) + 1) % TableSize.

Also full? (h(key) + 4) % TableSize.

Also full? (h(key) + 9) % TableSize.

Also full? (h(key) + 16) % TableSize.

…

Example

Insert: 89, 18, 49, 58, 79 into an empty hash table of size 10.

Then insert 76, 40, 48, 5, 55,47 into an empty hash table of size 7

0 1 2 3 4 5 6 7 8 9

49 1858 79 89

0 1 2 3 4 5 6

48 405 55 76

47

Quadratic Probing: Proof

Claim: If 𝜆 <
1

2
, and TableSize is prime then quadratic probing will find

an empty slot.

Quadratic Probing: Proof

Claim: If 𝜆 <
1

2
, and TableSize is prime then quadratic probing will find

an empty slot.

Enough to show, first TableSize/2 probes are distinct.

For contradiction, suppose there exists some 𝑖 ≠ 𝑗 such that

ℎ 𝑥 + 𝑖2 mod TableSize = ℎ 𝑥 + 𝑗2 mod TableSize

𝑖2 mod TableSize = 𝑗2 mod TableSize

𝑖2 − 𝑗2 mod TableSize = 0

Quadratic Probing: Proof

𝑖2 − 𝑗2 mod TableSize = 0

𝑖 + 𝑗 𝑖 − 𝑗 mod TableSize = 0

Thus TableSize divides 𝑖 + 𝑗 𝑖 − 𝑗

But TableSize is prime, so

TableSize divides 𝑖 + 𝑗 or 𝑖 − 𝑗

But that can’t be true -- 𝑖 + 𝑗 < TableSize

Problems

Still have a fairly large amount of probes (we won’t even try to do the
analysis)

We don’t have primary clustering, but we do have secondary clustering

If you initially hash to the same location, you follow the same set of
probes.

Double Hashing

Instead of probing by a fixed value every time, probe by some new hash
function!

h(key) % TableSize full?

Try (h(key) + g(key)) % TableSize.

Also full? (h(key) + 2*g(key)) % TableSize.

Also full? (h(key) + 3*g(key)) % TableSize.

Also full? (h(key) + 4*g(key)) % TableSize.

…

Example

Insert the following keys into a table of size 10 with the following hash
functions: 13, 28, 33, 147, 43

Primary hash function h(key) = key mod TableSize

Second hash function g(key) = 1 + ((key / TableSize) mod (TableSize-1))

0 1 2 3 4 5 6 7 8 9

33 28 147

43

13

Running Times

Double Hashing will find lots of possible slots as long as g(key) and
TableSize are relatively prime.

Under the uniform hashing assumption:

Expected probes for unsuccessful find:
1

1−𝜆

Successful:
1

1−𝜆
ln

1

1−𝜆

Derivation beyond the scope of this course.

Ask Robbie for references if you want to learn more.

Summary

Separate Chaining
-Easy to implement

-Running times 𝑂(1 + 𝜆)

Open Addressing
-Uses less memory.

-Various schemes:

-Linear Probing – easiest, but need to resize most frequently

-Quadratic Probing – middle ground

-Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried
about.

Other Topics

Perfect Hashing –
-if you have fewer than 232 possible keys, have a one-to-one hash function

Hopscotch and cuckoo hashing (more complicated collision resolution
strategies)

Other uses of hash functions:

Cryptographic hash functions
-Easy to compute, but hard to tell given hash what the input was.

Check-sums

Locality Sensitive Hashing
-Map “similar” items to similar hashes

Wrap Up

Hash tables have great behavior on average,

As long as we make assumptions about our data set.

But for every hash function, there’s a set of keys you can insert to grind
the hash table to a halt.

The number of keys is consistently larger than the number of ints.

An adversary can pick a set of values that all have the same hash.

Wrap Up

Can we avoid the terrible fate of our worst enemies forcing us to have
𝑂 𝑛 time dictionary operations?

If you have a lot of enemies, maybe use AVL trees.

But some hash table options:

Cryptographic hash functions – should be hard for adversary to find the
collisions.

Randomized families of hash functions – have a bunch of hash
functions, randomly choose a different one each time you start a hash
table.

Done right – adversary won’t be able to cause as many collisions.

Wrap Up

Hash Tables:
-Efficient find, insert, delete on average, under some assumptions

-Items not in sorted order

-Tons of real world uses

-…and really popular in tech interview questions.

Need to pick a good hash function.
-Have someone else do this if possible.

-Balance getting a good distribution and speed of calculation.

Resizing:
-Always make the table size a prime number.

-𝜆 determines when to resize, but depends on collision resolution strategy.

	Slide 1: Hash Tables II
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Reaching the Average Case
	Slide 5: Designing a Hash Function
	Slide 6: Some Possible Hash Functions
	Slide 7: A Better Hash Function
	Slide 8: Other Classes
	Slide 9: Other Classes
	Slide 10: Other Classes
	Slide 11: General Principles
	Slide 12: Java Specific Notes
	Slide 13: Java Specific Notes
	Slide 14: General Purpose hashCode()
	Slide 15: Collision Resolution
	Slide 16: Linear Probing
	Slide 17: Example
	Slide 18: How Does Delete Work?
	Slide 19: Example
	Slide 20: Example
	Slide 21: How Long Does Insert Take?
	Slide 22: When to Resize
	Slide 23: Why are there so many probes?
	Slide 24: Quadratic Probing
	Slide 25: Example
	Slide 26: Quadratic Probing: Proof
	Slide 27: Quadratic Probing: Proof
	Slide 28: Quadratic Probing: Proof
	Slide 29: Problems
	Slide 30: Double Hashing
	Slide 31: Example
	Slide 32: Running Times
	Slide 33: Summary
	Slide 34: Other Topics
	Slide 35: Wrap Up
	Slide 36: Wrap Up
	Slide 37: Wrap Up

