\l
\ A
» . . ’
.
-
'v }
B
-
“
A : I.J
"N W
1 R
.~ '.\ -
» »
5 : &y o
—— R e e E Ty e { *.n.: ot e ; s g
' Vavn-.vw A =
- ——— ﬂ‘f“-‘-o‘w v— o - - .
» . - - .Q — . ' — '1 ”‘l .

g.‘%v-. - e
- 0.~_,

- S

Hash Tables | | o332 seing202s

il ol sw

; - ————
R :

:
. >

Announcements

This TODAY Midterm conflict Fx 4 due
Week Ex 5 out form due -
Next I\{I-IPTERI\/I (@) Ex 5 due
Week G 4_1450 =
Form to request makeup midterm due to scheduling b M{J{W W
Please fill out by this Wednesday M/F S oo \

——

Another Dictionary

Our guiding principle for designing AVL trees was optimizing for the
worst case.

What if we want to optimize for the average case?

That goal will lead us to a totally different data structure: hash tables

A Simple Case

Suppose you were promised your keys would be distinct numbers in the
range 0 to k. |
—_

How would you implement a dictionary. What are the running times for
insert, find, and delete?

Just store the values in an array of size k + 1.
Store the value associated with i at index i of the array.
0(1) operations for everything!

Generalization (Step 1)

What if the keys are guaranteed to be integers,
.) 3 /
But the upper limit is huge.

N T —

Why not just use the array from last time?

How could we still use the array of size k?

Generalization (Step 1)

What if the keys are guaranteed to be integers,
But the upper limit is huge.

Why not just use the array from last time?

WAY too much space M

How could we still use the array of S|ze k?
Map the keys into the range {0, ..., k — 1}

% table size

Map to index key % TableSize
. ——— ﬁ‘

array 20, % (7 11, “biz” 5, “bar”

18,“

bop//

I
o1 O

put (11, “biz”)
put (18, “bop”)

0 1
0 =8
0 =0

Problem 1. What do we do when the keys collide?

Collision Resolution

Multiple Possible Strategies.

We'll talk about “open addressing” strategies later.
-_—

First, “Separate Chaining”

Idea: If more than one thing goes to the same spot

Just stuff them all in that one spot!

Separate Chaining

Instead of an array of values
Have an array of (say) LinkedLists of values.

Insert the following keys:@) (5,b) (21,a) (7,d) (12,e) (17,1) (1,g) (25,h)

(1,9) | (12,e) (5,b) (7,d)

} } |

Running Times

What are the running times for:

insert V\ ﬁﬁ
=S bl
findBest: 6 (\) —
Worst: Q(\(\3 jO\AQL(/ 6 }’%

delete C)(\f)

Best:
Worst: OC 2N \

Running Times

What are the running times for:
insert
Best: 0(1)
. Worst: 0(n)
find
Best: 0(1)
K’S Worst: 0(n)
delete

Best: 0(1)
~ Worst: 0(n)

Average Case

"\
- #_T;&O\fgkmd

What about on average?

Let's assume that the keys are W

What is the average running time if the size of the takle TableSize apd

we've inserted n keys?
S

insert

delete

Average Case

What about on average?
Let's assume that the keys are (independently, uniformly) randomly
distributed E— ——

What is the average running time if the size of the table TableSize and
we've inserted n keys?

insert<€QS ©(‘ c{r'f;jlp—g‘&) g—/

find 0(1+ ”.) N

TableSize
——

—

n

delete 0O (1 T TableSize) D

Average Case

What about on average?
Let's assume that the keys are (independently, uniformly) randomly

distributed

What is the average running time if the size of the table TableSize and
we've inserted n keys?

insert @d\+;\>\we’lldenote " — by A

. TableSize
find 0(1 _I;i) Often called “load factor”

delete 0(1+ A1) \)

When A Grows

It we keep inserting things into the array, A will keep increasing.

=

We'll never really run out of room.

When should we resize?

hen it slows us down)i.e. when A is a constant.
—

Heuristic: for separate chaining A between 1 and 3 is a good time to
resize. - =

Resizing

How long does it take to resize?
Need to:

Remake the table

Evaluate the hash function over again.

Re-Insert.
—

Total time: O(n + TableSize) = O(n) if A is a constant.

K‘s.

Resizing Redux

Let's resize by doubling the size of the array.

Za [\
f <1,g\ (12, e) (5,b) / (7,d) \
} I I
w (25,h) \ (17, f))

///\/
— -
(ESRE:D \ (5,b) ((7, D\
- |) ——
(21, a) (25, h)
.
7 <
(12, e)

Resizing Redux

That didn’t work very well!

It turned out that most of the keys that were equal mod 10 were also
equal mod 20.

This is likely with real data.

Don't just double the table size

T
Instead make the table size some new prime number.

. . . = . ./ .
[(?olhsmns can still happen, but patterns with multiple prime numbers are
rarer in real data than patterns with powers of 2.

Reaching the Average Case

In general, our keys might not be integers.
Given an arbitrary object type E, how do we get an array index?

Function

Usually Object writer's Usually HashTable
responsibility writer's responsibility

How do we make our assumption (keys are uniformly distributed) true?
Or at least true-ish?

Designing a Hash Function

For simplicity, let's start with Strings.
Question: How many Strings are there compared to ints?
WAY more strings.

Can we always avoid collisions
NO!

We can try to minimize them though.

Some Possible Hash Functions

For each of these hash functions, think about
what Strings will cause collisions
how long it will take to evaluate

Keys: strings of form sys; ...S,_q1 (s; are chars in range [0,256])
h(K) = s

h(K) = ?:_o1 Si

A Better Hash Function

h(K) =Y ts; - 31

Can we do this fast? Avoid calculating 31* directly. Multiplying by 31 can
be done with bit shift and subtraction to make this even faster.

for (1=k-1; 1>=0;1--) {
h = 31*h + s[1];
}

Other Classes

Should we use that same hash function if the strings are all URLs?

Other Classes

Should we use that same hash function if the strings are all URLs?
No! “https://www." Is worthless, use the rest of the string

Other Classes

Should we use that same hash function if the strings are all URLs?

No! “https://www." Is worthless, use the rest of the string

Person Class
String name; Date birthdate; Integer socialSecurityNum

Tradeoff between speed and collision avoidance.
What to hash is often just an unprincipled guess.

General Principles

You have 32 bits, use them.

If you have multiple pieces, have the hashes stretch across bits
Bitwise xor if you have to combine

DON'T DEFINE YOUR OWN HASH FUNCTION IF YOU DON'T HAVE TO
Rely on others to get this right if you can.

Java Specific Notes

Every object in Java implements the hashCode method.

If you define a new Object, and want to use a hash table, you might
want to override hashCode.

But if you do, you also need to override equals

Such that

If a.equals (b) then a.hashCode () == b.hashCode ()
This is part of the contract. Other code makes this assumption!
What about the converse?

Can't require it, but you should try to make it true as often as possible.

General Purpose hashCode()

int result = 17; // start at a prime - :
foreach field f Eifective Java
int fleldHashcode = Second Edition
boolean: (f ? 1: 0)
byte, char, short, int: (int) f
long: (int) (f A (f >>> 32))
float: Float.floatTolntBits(f)
double: Double.doubleToLongBits(f), then above

Object: object.hashCode()

result = 31 * result + fieldHashcode;

return result;

	Slide 1: Hash Tables I
	Slide 2: Announcements
	Slide 3: Another Dictionary
	Slide 4: A Simple Case
	Slide 5: Generalization (Step 1)
	Slide 6: Generalization (Step 1)
	Slide 7: % table size
	Slide 8: Collision Resolution
	Slide 9: Separate Chaining
	Slide 10: Running Times
	Slide 11: Running Times
	Slide 12: Average Case
	Slide 13: Average Case
	Slide 14: Average Case
	Slide 15: When lambda Grows
	Slide 16: Resizing
	Slide 17: Resizing Redux
	Slide 18: Resizing Redux
	Slide 19: Reaching the Average Case
	Slide 20: Designing a Hash Function
	Slide 21: Some Possible Hash Functions
	Slide 22: A Better Hash Function
	Slide 23: Other Classes
	Slide 24: Other Classes
	Slide 25: Other Classes
	Slide 26: General Principles
	Slide 27: Java Specific Notes
	Slide 28: General Purpose hashCode()

