
Wrap AVL, Hashing CSE 332 Spring 25

Lecture 9

Logistics

Monday Tuesday Wednesday Thursday Friday

This

Week Ex 2 due

TODAY

Ex 3 due

Ex 4 out

Next

Week

Ex 5 out Ex 4 due

Four Types of Rotations

x

y

z

A B C D

Insert location

(relative to lowest

imbalanced node)

Solution

Left subtree of left

child (A)

Single right rotation

Right subtree of

left child (B)

Double (left-right) rotation

Left subtree of

right child (C)

Double (right-left) rotation

Right subtree of

right child(D)

Single left rotation

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node.

-A rotation will cause the subtree rooted where the rotation happens to have the
same height it had before insertion.

Some Related Topics

Lazy deletion, formally arguing that we have height log n

Lazy Deletion

Lazy Deletion: A general way to make delete() more efficient.
(specifically, as efficient as find())

Don’t remove the entry from the structure, just “mark” it as deleted.

Benefits:
-Much simpler to implement

-More efficient to delete (no need to shift values on every single delete)

Drawbacks:
-Extra space:

-For the flag

-More drastically, data structure grows with all insertions, not with the current
number of items.

-Sometimes makes other operations more complicated (we’ll see with hash tables).

Every node/array-

index/etc. gets a Boolean.

Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Unsorted Array Θ(𝑚) Θ(𝑚) Θ 𝑚

Sorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Sorted Array Θ(𝑚) Θ(log 𝑚) Θ(log 𝑚)

We can do slightly better with lazy deletion, let 𝑚 be the total number of

elements ever inserted (even if later lazily deleted)

Think about what happens if a repeat key is inserted!

Deletion

In Exercise: Just do lazy deletion!

Alternatively: a similar set of rotations is possible to rebalance after a
deletion.
-The textbook (or Wikipedia) can tell you more.

-The delete rotations are more involved—you may have to rotate multiple times up
the tree. But you’ll still do Θ(log 𝑛) rotations in total

Formally bounding height

Where Were We?

We used rotations to restore the AVL property after insertion.

If ℎ is the height of an AVL tree:

It takes Ο(ℎ) time to find an imbalance (if any) and fix it.

So the worst case running time of insert? Θ(ℎ).

Is ℎ always 𝑂(log 𝑛) ? YES! These are all Θ(log 𝑛) . Let’s prove it!

Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes.

In general?

AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Some Doodles

Might be sparser than you would

have guessed!

But it will still be logarithmic

height…let’s prove it!

Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height
ℎ, meeting the AVL requirement.

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try a recursion tree…

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When evaluating, we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s going to be hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is
1+ 5

 2
≈ 1.62

The Proof

To convince you that the recurrence solution is correct, I don’t need to
tell you where it came from.

I just need to prove it correct via induction.

We’ll need this fact: 𝜙 + 1 = 𝜙2

It’s easy to check by just evaluating
1+ 5

 2

2

The Proof

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

𝜙 + 1 = 𝜙2

Base Cases: 𝜙0 − 1 = 0 < 1 = 𝑁(0) 𝜙1 − 1 = 𝜙 − 1 ≈ 0.62 < 2 = 𝑁(1)

Inductive Step

Inductive Hypothesis: Suppose that 𝑁 ℎ > 𝜙ℎ − 1 for ℎ < 𝑘.

Inductive Step: We show 𝑁 𝑘 > 𝜙𝑘 − 1.

𝑁 𝑘 = 𝑁 𝑘 − 1 + 𝑁 𝑘 − 2 + 1 definition of 𝑁()

> 𝜙𝑘−1 − 1 + 𝜙𝑘−2 − 1 + 1 by IH (note we need a strong hypothesis here)

= 𝜙𝑘−1 + 𝜙𝑘−2 − 1 algebra

= 𝜙𝑘−2 𝜙 + 1 − 1

= 𝜙𝑘−2 𝜙2 − 1 fact from last slide

= 𝜙𝑘+1 − 1

What’s the point?

The number of nodes in an AVL tree of height ℎ is always at least 𝜙ℎ −
1

So in an AVL tree with 𝑛 elements, the height is always at most
log𝜙 𝑛 + 1

In big-O terms, that’s enough to say the height is Θ log 𝑛 .

So our AVL trees really do have Θ(log 𝑛) worst cases for insert, find, and
delete!

Is the improvement worth it?

Wrap Up

Was this…worth it?

That was a lot of work (and there are going to be a lot of pointers to
move around to actually make those trees…)

Is going from 𝑛 to log 𝑛 a good enough improvement?

Wrap Up

Insert Find Delete

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Array Θ(𝑛) Θ(𝑛) Θ 𝑛

Sorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ(𝑛) Θ(log 𝑛) Θ(𝑛)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Does It Matter?

Θ(log 𝑛) is the most common running time between Θ(1) and Θ(𝑛).

Which of these times is log 𝑛 between?

Θ(1) A Θ(𝑛0.01) B Θ(𝑛0.1) C Θ(𝑛0.5) D Θ(𝑛)

Does It Matter?

We sped up from Θ(𝑛) to Θ(log 𝑛).

Suppose we could handle an input of size 𝑘 with the
Θ(𝑛) algorithm. If the constant factors are small (and similar)
we’ll be able to handle an input of size 2𝑘 in the same time.

Imagine you can handle an input of size 𝑠. Can you handle an input of
size 𝑠2?

For Θ(𝑛) algorithms, maybe not; it will almost square the time it takes.
-“Almost” is because the constant factors don’t change.

For Θ(log 𝑛) algorithms, yes! You’ll at most double the time it takes.
-“At most” because the lower order terms change differently.

Does It Matter?

Let’s say you have an algorithm that takes 𝑛 milliseconds or log2 𝑛
milliseconds. How long does it take to run when 𝑛 is…

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

𝒍𝒐𝒈𝟐 𝒏 0.010 s 0.013s 0.017s 0.020s 0.023s 0.027s

𝒏 1 second 10 seconds 2 minutes 17 minutes 2.7 hours 1 day

log2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) ≈ 268.

Constant factors do matter, (and for reasons you’ll learn in 351, constant

factors get worse as your dataset gets bigger) but you can’t make a dataset

so big that the log2(𝑛) part will be what makes it intractable.

Other Dictionaries

There are lots of flavors of self-balancing search trees

“Red-black trees” work on a similar principle to AVL trees, similar
tradeoffs.

“Splay trees”
-Get 𝑂(log 𝑛) amortized bounds for all operations.

“Scapegoat trees”

“Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

Next: A completely different idea for a dictionary

Goal: 𝑂(1) operations on average, in exchange for 𝑂(𝑛) worst case.

Wrap Up

AVL Trees:

𝑂(log 𝑛) worst case find, insert, and delete.

Pros:
-Much more reliable running times than regular BSTs.

Cons:
-Tricky to implement

-A little more space to store subtree heights

A Different Dictionary

Another Dictionary

Our guiding principle for designing AVL trees was optimizing for the
worst case.

What if we want to optimize for the average case?

That goal will lead us to a totally different data structure: hash tables

A Simple Case

Suppose you were promised your keys would be distinct numbers in the
range 0 to 𝑘.

How would you implement a dictionary. What are the running times for
insert, find, and delete?

Just store the values in an array of size 𝑘 + 1.

Store the value associated with 𝑖 at index 𝑖 of the array.

𝑂(1) operations for everything!

Generalization (Step 1)

What if the keys are guaranteed to be integers,

But the upper limit is huge.

Why not just use the array from last time?

How could we still use the array of size 𝑘?

Generalization (Step 1)

What if the keys are guaranteed to be integers,

But the upper limit is huge.

Why not just use the array from last time?
-WAY too much space

How could we still use the array of size 𝑘?
-Map the keys into the range {0, … , 𝑘 − 1}.

% table size

indices 0 1 2 3 4 5 6 7 8 9

array

put(0, “foo”);

put(5, “bar”);

put(11, “biz”)

put(18, “bop”);

put(20, “:(”); Collision!

0,“foo”

0 % 10 = 0

5 % 10 = 5

11 % 10 = 1

18 % 10 = 8

20 % 10 = 0

18,“bop”5,“bar”11,“biz”20,“:(”

Map to index key % TableSize

Problem 1: What do we do when the keys collide?

Collision Resolution

Multiple Possible Strategies.

We’ll talk about “open addressing” strategies later.

 First, we’ll discuss “Separate Chaining”

Idea: If more than one thing goes to the same spot

Just stuff them all in that one spot!

Separate Chaining

Instead of an array of values

Have an array of (say) LinkedLists of values.

Insert the following keys: (1, a) (5,b) (21,a) (7,d) (12,e) (17,f) (1,g) (25,h)

0 1 2 3 4 5 6 7 8 9

(1,a) (5,b)

(21,a) (17,f)

(1,g) (12,e) (7,d)

(25,h)

Running Times

What are the running times for:

insert

 Best:

 Worst:

find

 Best:

 Worst:

 delete

 Best:

 Worst:

Running Times

What are the running times for:

insert

 Best: 𝑂(1)

 Worst: 𝑂(𝑛)

find

 Best: 𝑂(1)

 Worst: 𝑂(𝑛)

 delete

 Best: 𝑂(1)
 Worst: 𝑂(𝑛)

Average Case

What about on average?
Let’s that the keys are randomly distributed

What is the average running time if the size of the table 𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 and
we’ve inserted 𝑛 keys?

insert

find

delete

assume

Average Case

What about on average?
Let’s that the keys are (independently and uniformly) randomly
distributed.

What is the average running time if the size of the table 𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 and
we’ve inserted 𝑛 keys?

insert 𝑂(1)

find 𝑂 1 +
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

delete 𝑂 1 +
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

assume

Average Case

What about on average?
Let’s that the keys are (independently and uniformly) randomly
distributed.

What is the average running time if the size of the table 𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 and
we’ve inserted 𝑛 keys?

insert 𝑂(1)

find 𝑂 1 + 𝜆

delete 𝑂 1 + 𝜆

assume

We’ll denote
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 by 𝜆.

Often called “load factor”

When 𝜆 Grows

If we keep inserting things into the array, 𝜆 will keep increasing.

We’ll never really run out of room.

When should we resize?

When it slows us down, i.e. when 𝜆 is a constant.

Heuristic: for separate chaining 𝜆 between 1 and 3 is a good time to
resize.

Resizing

How long does it take to resize?

Need to:

Remake the table

Evaluate the hash function over again.

Re-insert.

Total time: 𝑂 𝑛 + 𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒 = 𝑂(𝑛) if 𝜆 is a constant.

Resizing Redux
Let’s resize by doubling the size of the array.

0 1 2 3 4 5 6 7 8 9

(1,a) (5,b)

(21,a) (17,f)

(1,g) (12,e) (7,d)

(25,h)

0 1 2 3 4 5 6 7 8 9

(1,a) (5,b)

(21,a)

(1,g) (7,d)

(25,h)

10 11 12 13 14 15 16 17 18 19

(12,e) (17,f)

Resizing Redux

That didn’t work very well!

It turned out that most of the keys that were equal mod 10 were also
equal mod 20.

This is likely with real data.

Don’t just double the table size

Instead make the table size some new prime number.

Collisions can still happen, but patterns with multiple prime numbers are
rarer in real data than patterns with powers of 2.

Extra Example

A Bigger AVL example: Insert 11

6

8

1 3

10

9

72

4

5

11

4 is imbalanced

6

8

1 3

10

9

72

4

5

11

Insert happened (to the right, to the right)
Need a (single) left rotation

9

7

4

8

6

5

1 3

2

10

11

A Bigger AVL example: Insert 11

6

8

1 3

10

9

72

4

5

4.5

	Slide 1: Wrap AVL, Hashing
	Slide 2: Logistics
	Slide 3: Four Types of Rotations
	Slide 4: How Long Does Rebalancing Take?
	Slide 5: How Long Does Rebalancing Take?
	Slide 6: Some Related Topics
	Slide 7: Lazy Deletion
	Slide 8: Simple Dictionary Implementations
	Slide 9: Deletion
	Slide 10: Formally bounding height
	Slide 11: Where Were We?
	Slide 12: Bounding the Height
	Slide 13: Some Doodles
	Slide 14: Bounding the Height
	Slide 15: Bounding the Height
	Slide 16: Bounding the Height
	Slide 17: The Proof
	Slide 18: The Proof
	Slide 19: Inductive Step
	Slide 20: What’s the point?
	Slide 21: Is the improvement worth it?
	Slide 22: Wrap Up
	Slide 23: Wrap Up
	Slide 24: Does It Matter?
	Slide 25: Does It Matter?
	Slide 26: Does It Matter?
	Slide 27: Other Dictionaries
	Slide 28: Wrap Up
	Slide 29: A Different Dictionary
	Slide 30: Another Dictionary
	Slide 31: A Simple Case
	Slide 32: Generalization (Step 1)
	Slide 33: Generalization (Step 1)
	Slide 35: % table size
	Slide 36: Collision Resolution
	Slide 37: Separate Chaining
	Slide 38: Running Times
	Slide 39: Running Times
	Slide 40: Average Case
	Slide 41: Average Case
	Slide 42: Average Case
	Slide 43: When lambda Grows
	Slide 44: Resizing
	Slide 45: Resizing Redux
	Slide 46: Resizing Redux
	Slide 47: Extra Example
	Slide 48: A Bigger AVL example: Insert 11
	Slide 49: 4 is imbalanced
	Slide 50: Insert happened (to the right, to the right) Need a (single) left rotation
	Slide 51: A Bigger AVL example: Insert 11

