
AVL Trees CSE 332 Spring 2025

Lecture 8

Logistics

Monday Tuesday Wednesday Thursday Friday

This

Week Ex 2 due

TODAY Ex 3 due

Ex 4 out

Next

Week

Ex 5 out Ex 4 due

A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛) Θ(𝑛)

We’re in the same position we were in for heaps

BSTs are great on average,

but we need to avoid the worst case.

Avoiding the Worst Case

Take II:

Here are some other requirements you might try. Could they work? If
not what can go wrong?

Root Balanced: The root must have the same number of nodes in its

left and right subtrees

Recursively Balanced: Every node must have the same number of

nodes in its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must

have the same height.

Avoiding the Worst Case

Take III:

The AVL condition

This actually works. To convince you it works, we have to check:
1. Such a tree must have height 𝑂(log 𝑛) .

2. We must be able to maintain this property when inserting/deleting

AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Warm-Up
AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Is this a valid AVL tree? 4

52

73

9

8 106

Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6

Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3
1

2

3

Insertion

After you insert, check each node back up for balance

You rebalance at the lowest problem node
-The lowest node at which the AVL condition is violated---heights differ by 2.

Then ask “what directions were the insertion from here” for two levels
from lowest problem node
-There’s a case for each of the 4 combinations:

-Left-left

-Left-right

-Right-left

-Right-right

Left Rotation

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

Rest of

the tree

A B

C D

BALANCED

Subtrees are equal heights

Insertion

here

Left Single Rotation

From lowest-problem node, insertion happened in right child’s right
subtree.

Let 𝑥 be problem node, 𝑦 be 𝑥’s right child, 𝑧 be 𝑦’s right child.

Let 𝑎 = x. left, b = y. left, c = z. left, d = z. right //only need some of these.

Let 𝑦. left=𝑥; 𝑦. right = 𝑧.

Let 𝑥.right=𝑏, //don’t need to update x.left, already correct value

//Don’t need to update z’s pointers

Let 𝑥’s parent point to 𝑦. // will have to implement this via recursion.

Is it a BST Still?

From pre-insertion ordering, we know

𝑥 < 𝑦 < 𝑧

𝐴 < 𝑥

𝑥 < 𝐵 < 𝑦

𝑦 < 𝐶 < 𝑧

𝑧 < 𝐷

Post-insertion, 𝑥, 𝑦, 𝑧 in appropriate spots relative to each other

𝐴 left of 𝑥, 𝐵 between 𝑥 and 𝑦. 𝐶 between 𝑦 and 𝑧, 𝐷 right of 𝑧

So we’re still a BST! :D

Are We balanced now?

Intuitively: 𝑧 got longer, so it must be the too-long side.

Rotation lengthened left subtree by 1, shrunk right subtree by 1.

Subtrees differed by 2 (since invariant kept us off-by-one before), now
we are balanced!

The tree now has its pre-insertion height, so our ancestors don’t have to
worry!

Sketch of balance proof

Insertion

here

Left Single Rotation
(insert happened ->right->right)

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

𝑘 𝑘 + 2

Let height of 𝐴 be 𝑘.

Insertion adjusts heights by ≤ 1.

Since 𝑥 is imbalanced now, right

subtree must have height 𝑘 + 2

after insertion.

Insertion

here

Left Single Rotation
(insert happened ->right->right)

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

𝑘

Cl: 𝑧 has height 𝑘 + 1

𝑦 had height 𝑘 + 2, and right

subtree must be longer side to

cause imbalance).

Cl: 𝐵 has height 𝑘.
𝑦 was balanced before insertion.

For an imbalance to happen at 𝑥,

𝑧’s increase in height must have

increased height of tree rooted at

𝑦. So 𝐵 must have height ≤ 𝑘.

But 𝑦 is balanced now (𝑥 is lowest

imbalanced), so height ≥ 𝑘
⇒height is 𝑘.

𝑘 + 1
𝑘

Rest of

the tree

Left Single Rotation
(insert happened ->right->right)

x

y

z

A B

C D

BALANCED

Subtrees are equal heights

𝑘 + 1

𝑘
𝑘

𝑘 + 1

𝑦 is balanced (both subtrees

height 𝑘 + 1).

𝑥 is balanced (both subtrees

height 𝑘).

𝑧 is balanced (was not a

problem node in recursion,

and haven’t rearranged its

descendants).

Rest of

the tree

Left Single Rotation
(insert happened ->right->right)

x

y

z

A B

C D

BALANCED

Subtrees are equal heights

𝑘 + 1

𝑘
𝑘

𝑘 + 1

What about 𝑦’s parent?

Post rotation, this tree has

height 𝑘 + 2
Post-insertion, pre-rotation,

tree had height 𝑘 + 3, so pre-

insertion, pre-rotation, tree

had height 𝑘 + 2.

The height is the same now,

so our parent must be

balanced! No need to even

check after this---no more

rotations needed.

The Other Cases

There are other cases

There are three other cases, depending on where the insertion
happened

A left rotation handles when the insertion was
lowest imbalanced node -> right -> right

What if it was somewhere else?

Easiest is symmetric one

Insertion was
Lowest imbalanced node -> left -> left

Single Right Rotation
(Insertion happened (imbalance->left->left)

x

y

z

Rest of

the tree UNBALANCED

Left subtree is 2 longer

A
B

C D

x

y

z

Rest of

the tree

ABC D

BALANCED

Subtrees are equal heights

Insertion

here

It Gets More Complicated

1

3

2

Can’t do a left rotation

Do a “right” rotation around 3 first.

i.e. 3 is x, 2 is y, (null is z) from last slide.

1

3

2

Now longer subtree is right->right

of imbalance, do a left rotation

around 1.

1 is x, 2 is y, 3 is z from 2 slides ago.

1

2

3

Insertion

happened to

right->left of

imbalance.

Right Left Rotation

x

z

y

Rest of

the tree

A

B C

D

x

y

z

Rest of

the tree

A
B

C D

UNBALANCED

Right subtree is 2 longer

Left subtree is

 1 longer

Still Unbalanced

Did right rotation

around y.

Insertion

here

Right Left Rotation

x

y

z

Rest of

the tree

A

B

C D

Now do left

rotation around x

Balanced!

x

y

z

Rest of

the tree

A
B

C D

Still Unbalanced

Did right rotation

around y.

Four Types of Rotations

x

y

z

A B C D

Insert location

(relative to lowest

imbalanced node)

Solution

Left subtree of left

child (A)

Single right rotation

Right subtree of

left child (B)

Double (left-right) rotation

Left subtree of

right child (C)

Double (right-left) rotation

Right subtree of

right child(D)

Single left rotation

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 26

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 27

8

9

10

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 28

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 29

8

11

9

10

12

AVL Example: 8,9,10,12,11

CSE 373 SU 18 – BEN JONES 30

8

9

10

11

12

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?

How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node.

-A rotation will cause the subtree rooted where the rotation happens to have the
same height it had before insertion.

Some Related Topics

Lazy deletion, formally arguing that we have height log n

Aside: Lazy Deletion

Lazy Deletion: A general way to make delete() more efficient.
(specifically, as efficient as find())

Don’t remove the entry from the structure, just “mark” it as deleted.

Benefits:
-Much simpler to implement

-More efficient to delete (no need to shift values on every single delete)

Drawbacks:
-Extra space:

-For the flag

-More drastically, data structure grows with all insertions, not with the current
number of items.

-Sometimes makes other operations more complicated.

Every node/array-

index/etc. gets a Boolean.

Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Unsorted Array Θ(𝑚) Θ(𝑚) Θ 𝑚

Sorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Sorted Array Θ(𝑚) Θ(log 𝑚) Θ(log 𝑚)

We can do slightly better with lazy deletion, let 𝑚 be the total number of

elements ever inserted (even if later lazily deleted)

Think about what happens if a repeat key is inserted!

Deletion

In Exercise: Just do lazy deletion!

Alternatively: a similar set of rotations is possible to rebalance after a
deletion.
-The textbook (or Wikipedia) can tell you more.

-The delete rotations are more involved—you may have to rotate multiple times up
the tree. But you’ll still do O(log 𝑛) rotations in total, so work is Θ(log 𝑛) in worst
case.

Formally bounding height

Where Were We?

We used rotations to restore the AVL property after insertion.

If ℎ is the height of an AVL tree:

It takes Ο(ℎ) time to find an imbalance (if any) and fix it.

So the worst case running time of insert? Θ(ℎ).

Is ℎ always 𝑂(log 𝑛) ? YES! These are all Θ(log 𝑛) . Let’s prove it!

Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes.

In general?

AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height
ℎ, meeting the AVL requirement.

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try a recursion tree…

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When unrolling we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s going to be hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is
1+ 5

 2
≈ 1.62

The Proof

To convince you that the recurrence solution is correct, I don’t need to
tell you where it came from.

I just need to prove it correct via induction.

We’ll need this fact: 𝜙 + 1 = 𝜙2

It’s easy to check by just evaluating
1+ 5

 2

2

The Proof

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

𝜙 + 1 = 𝜙2

Base Cases: 𝜙0 − 1 = 0 < 1 = 𝑁(0) 𝜙1 − 1 = 𝜙 − 1 ≈ 0.62 < 2 = 𝑁(1)

Inductive Step

Inductive Hypothesis: Suppose that 𝑁 ℎ > 𝜙ℎ − 1 for ℎ < 𝑘.

Inductive Step: We show 𝑁 𝑘 > 𝜙𝑘 − 1.

𝑁 𝑘 = 𝑁 𝑘 − 1 + 𝑁 𝑘 − 2 + 1 definition of 𝑁()

> 𝜙𝑘−1 − 1 + 𝜙𝑘−2 − 1 + 1 by IH (note we need a strong hypothesis here)

= 𝜙𝑘−1 + 𝜙𝑘−2 − 1 algebra

= 𝜙𝑘−2 𝜙 + 1 − 1

= 𝜙𝑘−2 𝜙2 − 1 fact from last slide

= 𝜙𝑘+1 − 1

What’s the point?

The number of nodes in an AVL tree of height ℎ is always at least 𝜙ℎ −
1

So in an AVL tree with 𝑛 elements, the height is always at most
log𝜙 𝑛 + 1

In big-O terms, that’s enough to say the height is Θ log 𝑛 .

So our AVL trees really do have Θ(log 𝑛) worst cases for insert, find, and
delete!

Is the improvement worth it?

Wrap Up

Was this…worth it?

That was a lot of work (and there are going to be a lot of pointers to
move around to actually make those trees…)

Is going from 𝑛 to log 𝑛 a good enough improvement?

Wrap Up

Insert Find Delete

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Array Θ(𝑛) Θ(𝑛) Θ 𝑛

Sorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ(𝑛) Θ(log 𝑛) Θ(𝑛)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Does It Matter?

Θ(log 𝑛) is the most common running time between Θ(1) and Θ(𝑛).

Which of these times is log 𝑛 between?

Θ(1) A Θ(𝑛0.01) B Θ(𝑛0.1) C Θ(𝑛0.5) D Θ(𝑛)

Fill out the poll everywhere so

Robbie knows how much to explain

Pollev.com/robbie

Does It Matter?

We sped up from Θ(𝑛) to Θ(log 𝑛).

Suppose we could handle an input of size 𝑘 with the Θ(𝑛)
algorithm. If the constant factors are small (and similar)
we’ll be able to handle an input of size 2𝑘 in the same time.

Is squaring the size of the input an issue?

For Θ(𝑛) algorithms, yes, it will almost square the time it takes.
-“Almost” is because the constant factors don’t change.

For Θ(log 𝑛) algorithms, no. You’ll at most double the time it takes.
-“At most” because the lower order terms change differently.

Does It Matter?

Let’s say you have an algorithm that takes 𝑛 milliseconds or log2 𝑛
milliseconds. How long does it take to run when 𝑛 is…

1000 10000 100000 1000000 10000000 100000000

𝒍𝒐𝒈𝟐 𝒏 0.010 s 0.013s 0.017s 0.020s 0.023s 0.027s

𝒏 1 second 10 seconds 2 minutes 17 minutes 2.7 hours 1 day

log2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) ≈ 268.

Constant factors do matter, (and for reasons you’ll learn in 351, constant

factors get worse as your dataset gets bigger) but you can’t make a dataset

so big that the log2(𝑛) part will be what makes it intractable.

Other Dictionaries

There are lots of flavors of self-balancing search trees

“Red-black trees” work on a similar principle to AVL trees.

“Splay trees”

-Get 𝑂(log 𝑛) amortized bounds for all operations.

“Scapegoat trees”

“Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

Next week: A completely different idea for a dictionary

Goal: 𝑂(1) operations on average, in exchange for 𝑂(𝑛) worst case.

Wrap Up

AVL Trees:

𝑂(log 𝑛) worst case find, insert, and delete.

Pros:

Much more reliable running times than regular BSTs.

Cons:

Tricky to implement

A little more space to store subtree heights

Aside: Traversals

Aside: Traversals

What if, to save space, we didn’t store heights of subtrees.

How could we calculate from scratch?

We could use a “traversal”

int height(Node curr){

 if(curr==null) return -1;

 int h = Math.max(height(curr.left),height(curr.right));

 return h+1;

}

Three Kinds of Traversals

InOrder(Node curr){

 InOrder(curr.left);

 doSomething(curr);

 InOrder(curr.right);

}

PreOrder(Node curr){

 doSomething(curr);

 PreOrder(curr.left);

 PreOrder(curr.right);

}

PostOrder(Node curr){

 PostOrder(curr.left);

 PostOrder(curr.right);

 doSomething(curr);

}

Traversals

If we have 𝑛 elements, how long does it take to calculate height?

 Θ(𝑛) time.

The recursion tree (from the tree method) IS the AVL tree!

We do a constant number of operations at each node

In general, traversals take Θ 𝑛 ⋅ 𝑓(𝑛) time,

where doSomething()takes Θ 𝑓 𝑛 time.

Optional: Some more math
slides

Right Left Rotation

x

z

y

Rest of

the tree

A

B C

D

UNBALANCED

Right subtree is 2 longer

Insertion

here

𝑘

𝑘 + 2

𝑘 + 1 𝑘

x

y

z

Rest of

the tree

A

B

C D

After both

rotations.

Balanced!

𝑘 + 1

𝑘 + 1

What happens if you try to solve the 𝑁()
recurrence?

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1

= 𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 𝑁 ℎ − 2 + 1

= 2𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 1

= 2 𝑁 ℎ − 3 + 𝑁 ℎ − 4 + 1 + 𝑁 ℎ − 3 + 1 + 1

= 3𝑁 ℎ − 3 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 3 𝑁 ℎ − 4 + 𝑁 ℎ − 5 + 1 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 5𝑁 ℎ − 4 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5 𝑁 ℎ − 5 + 𝑁 ℎ − 6 + 1 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5𝑁 ℎ − 6 + 8𝑁 ℎ − 5 + 5 + 3 + 2 + 1 + 1
…

	Slide 1: AVL Trees
	Slide 2: Logistics
	Slide 3: A Better Implementation
	Slide 4: Avoiding the Worst Case
	Slide 5: Avoiding the Worst Case
	Slide 6: Warm-Up
	Slide 7: Are These AVL Trees?
	Slide 8: Insertion
	Slide 9: Insertion
	Slide 10: Left Rotation
	Slide 11: Left Single Rotation
	Slide 12: Is it a BST Still?
	Slide 13: Are We balanced now?
	Slide 14: Sketch of balance proof
	Slide 15: Left Single Rotation (insert happened ->right->right)
	Slide 16: Left Single Rotation (insert happened ->right->right)
	Slide 17: Left Single Rotation (insert happened ->right->right)
	Slide 18: Left Single Rotation (insert happened ->right->right)
	Slide 19: The Other Cases
	Slide 20: There are other cases
	Slide 21: Single Right Rotation (Insertion happened (imbalance->left->left)
	Slide 22: It Gets More Complicated
	Slide 23: Right Left Rotation
	Slide 24: Right Left Rotation
	Slide 25: Four Types of Rotations
	Slide 26: AVL Example: 8,9,10,12,11
	Slide 27: AVL Example: 8,9,10,12,11
	Slide 28: AVL Example: 8,9,10,12,11
	Slide 29: AVL Example: 8,9,10,12,11
	Slide 30: AVL Example: 8,9,10,12,11
	Slide 31: How Long Does Rebalancing Take?
	Slide 32: How Long Does Rebalancing Take?
	Slide 33: Some Related Topics
	Slide 34: Aside: Lazy Deletion
	Slide 35: Simple Dictionary Implementations
	Slide 36: Deletion
	Slide 37: Formally bounding height
	Slide 38: Where Were We?
	Slide 39: Bounding the Height
	Slide 40: Bounding the Height
	Slide 41: Bounding the Height
	Slide 42: Bounding the Height
	Slide 43: The Proof
	Slide 44: The Proof
	Slide 45: Inductive Step
	Slide 46: What’s the point?
	Slide 47: Is the improvement worth it?
	Slide 48: Wrap Up
	Slide 49: Wrap Up
	Slide 50: Does It Matter?
	Slide 51: Does It Matter?
	Slide 52: Does It Matter?
	Slide 53: Other Dictionaries
	Slide 54: Wrap Up
	Slide 55: Aside: Traversals
	Slide 56: Aside: Traversals
	Slide 57: Three Kinds of Traversals
	Slide 58: Traversals
	Slide 59: Optional: Some more math slides
	Slide 60: Right Left Rotation
	Slide 61: What happens if you try to solve the cap N open paren close paren recurrence?

