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Logistics
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A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛) Θ(𝑛)

We’re in the same position we were in for heaps 

BSTs are great on average, 

but we need to avoid the worst case.



Avoiding the Worst Case

Take II:

Here are some other requirements you might try. Could they work? If 
not what can go wrong?

Root Balanced: The root must have the same number of nodes in its 

left and right subtrees

Recursively Balanced: Every node must have the same number of 

nodes in its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must 

have the same height.



Avoiding the Worst Case

Take III:

The AVL condition

This actually works. To convince you it works, we have to check:
1. Such a tree must have height 𝑂(log 𝑛) .

2. We must be able to maintain this property when inserting/deleting

AVL condition: For every node, the height of its left subtree and 

right subtree differ by at most 1. 



Warm-Up
AVL condition: For every node, the height of its left subtree and 

right subtree differ by at most 1. 

Is this a valid AVL tree? 4

52

73

9

8 106



Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6



Insertion

What happens if when we do an insertion, we break the AVL condition?
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Insertion

After you insert, check each node back up for balance

You rebalance at the lowest problem node
-The lowest node at which the AVL condition is violated---heights differ by 2.

Then ask “what directions were the insertion from here” for two levels 
from lowest problem node
-There’s a case for each of the 4 combinations:

-Left-left

-Left-right

-Right-left

-Right-right



Left Rotation
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Left Single Rotation

From lowest-problem node, insertion happened in right child’s right 
subtree.

Let 𝑥 be problem node, 𝑦 be 𝑥’s right child, 𝑧 be 𝑦’s right child.

Let 𝑎 = x. left, b = y. left, c = z. left, d = z. right //only need some of these.

Let 𝑦. left=𝑥; 𝑦. right = 𝑧.

Let 𝑥.right=𝑏, //don’t need to update x.left, already correct value 

//Don’t need to update z’s pointers

Let 𝑥’s parent point to 𝑦. // will have to implement this via recursion.



Is it a BST Still?

From pre-insertion ordering, we know

𝑥 < 𝑦 < 𝑧

𝐴 < 𝑥

𝑥 < 𝐵 < 𝑦

𝑦 < 𝐶 < 𝑧

𝑧 < 𝐷

Post-insertion, 𝑥, 𝑦, 𝑧 in appropriate spots relative to each other

𝐴 left of 𝑥, 𝐵 between 𝑥 and 𝑦. 𝐶 between 𝑦 and 𝑧, 𝐷 right of 𝑧

So we’re still a BST! :D 



Are We balanced now?

Intuitively: 𝑧 got longer, so it must be the too-long side.

Rotation lengthened left subtree by 1, shrunk right subtree by 1. 

Subtrees differed by 2 (since invariant kept us off-by-one before), now 
we are balanced!

The tree now has its pre-insertion height, so our ancestors don’t have to 
worry!



Sketch of balance proof



Insertion 

here

Left Single Rotation 
(insert happened ->right->right)

x
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the tree UNBALANCED

Right subtree is 2 longer
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C D

𝑘 𝑘 + 2

Let height of 𝐴 be 𝑘.

Insertion adjusts heights by ≤ 1.

Since 𝑥 is imbalanced now, right 

subtree must have height 𝑘 + 2 

after insertion.



Insertion 

here

Left Single Rotation 
(insert happened ->right->right)
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Right subtree is 2 longer
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C D

𝑘

Cl: 𝑧 has height 𝑘 + 1 

𝑦 had height 𝑘 + 2, and right 

subtree must be longer side to 

cause imbalance).

Cl: 𝐵 has height 𝑘.
𝑦 was balanced before insertion.

For an imbalance to happen at 𝑥, 

𝑧’s increase in height must have 

increased height of tree rooted at 

𝑦. So 𝐵 must have height ≤ 𝑘.

But 𝑦 is balanced now (𝑥 is lowest 

imbalanced), so height ≥ 𝑘
⇒height is 𝑘. 

𝑘 + 1
𝑘



Rest of 

the tree

Left Single Rotation 
(insert happened ->right->right)

x
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BALANCED

Subtrees are equal heights
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𝑘
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𝑦 is balanced (both subtrees 

height 𝑘 + 1).

𝑥 is balanced (both subtrees 

height 𝑘).

𝑧 is balanced (was not a 

problem node in recursion, 

and haven’t rearranged its 

descendants).



Rest of 

the tree

Left Single Rotation 
(insert happened ->right->right)
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Subtrees are equal heights
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𝑘
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What about 𝑦’s parent?

Post rotation, this tree has 

height 𝑘 + 2
Post-insertion, pre-rotation, 

tree had height 𝑘 + 3, so pre-

insertion, pre-rotation, tree 

had height 𝑘 + 2.

The height is the same now, 

so our parent must be 

balanced! No need to even 

check after this---no more 

rotations needed. 



The Other Cases



There are other cases

There are three other cases, depending on where the insertion 
happened

A left rotation handles when the insertion was 
lowest imbalanced node -> right -> right

What if it was somewhere else?

Easiest is symmetric one

Insertion was 
Lowest imbalanced node -> left -> left



Single Right Rotation
(Insertion happened (imbalance->left->left)
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It Gets More Complicated

1

3

2

Can’t do a left rotation

Do a “right” rotation around 3 first.

i.e. 3 is x, 2 is y, (null is z) from last slide.

1

3

2

Now longer subtree is right->right 

of imbalance, do a left rotation 

around 1.

1 is x, 2 is y, 3 is z from 2 slides ago.
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right->left of 

imbalance.



Right Left Rotation
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Right Left Rotation
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Four Types of Rotations
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z

A B C D

Insert location 

(relative to lowest 

imbalanced node)

Solution

Left subtree of left 

child (A)

Single right rotation

Right subtree of 

left child (B)

Double (left-right) rotation

Left subtree of 

right child (C)

Double (right-left) rotation

Right subtree of 

right child(D)

Single left rotation



AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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AVL Example: 8,9,10,12,11
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How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?

How many rotations might we have to do?



How Long Does Rebalancing Take?

Assume we store in each node the height of its subtree.

How do we find an unbalanced node?
-Just go back up the tree from where we inserted.

How many rotations might we have to do?
-Just a single or double rotation on the lowest unbalanced node. 

-A rotation will cause the subtree rooted where the rotation happens to have the 
same height it had before insertion.



Some Related Topics

Lazy deletion, formally arguing that we have height log n



Aside: Lazy Deletion

Lazy Deletion: A general way to make delete() more efficient. 
(specifically, as efficient as find())

Don’t remove the entry from the structure, just “mark” it as deleted.

Benefits:
-Much simpler to implement

-More efficient to delete (no need to shift values on every single delete)

Drawbacks:
-Extra space:

-For the flag

-More drastically, data structure grows with all insertions, not with the current 
number of items.

-Sometimes makes other operations more complicated.

Every node/array-

index/etc. gets a Boolean.



Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Unsorted Array Θ(𝑚) Θ(𝑚) Θ 𝑚

Sorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Sorted Array Θ(𝑚) Θ(log 𝑚) Θ(log 𝑚)

We can do slightly better with lazy deletion, let 𝑚 be the total number of 

elements ever inserted (even if later lazily deleted)

Think about what happens if a repeat key is inserted!



Deletion

In Exercise: Just do lazy deletion!

Alternatively: a similar set of rotations is possible to rebalance after a 
deletion. 
-The textbook (or Wikipedia) can tell you more. 

-The delete rotations are more involved—you may have to rotate multiple times up 
the tree. But you’ll still do O(log 𝑛) rotations in total, so work is Θ(log 𝑛) in worst 
case.



Formally bounding height



Where Were We?

We used rotations to restore the AVL property after insertion.

If ℎ is the height of an AVL tree:

It takes Ο(ℎ) time to find an imbalance (if any) and fix it.

So the worst case running time of insert? Θ(ℎ).

Is ℎ always 𝑂(log 𝑛) ? YES! These are all Θ(log 𝑛) . Let’s prove it!



Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes. 

In general?

AVL condition: For every node, the height of its left subtree and 

right subtree differ by at most 1. 



Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height 
ℎ, meeting the AVL requirement.

𝑁 ℎ =  ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise



Bounding the Height

𝑁 ℎ =  ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try a recursion tree… 



Bounding the Height

𝑁 ℎ =  ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When unrolling we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s going to be hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is 

𝑁 ℎ ≥ 𝜙ℎ  − 1 where 𝜙 is 
1+ 5

 2
≈ 1.62



The Proof

To convince you that the recurrence solution is correct, I don’t need to 
tell you where it came from. 

I just need to prove it correct via induction. 

We’ll need this fact: 𝜙 + 1 = 𝜙2

It’s easy to check by just evaluating
1+ 5

 2

2



The Proof

𝑁 ℎ =  ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

𝜙 + 1 = 𝜙2

Base Cases: 𝜙0 − 1 = 0 < 1 = 𝑁(0)   𝜙1 − 1 = 𝜙 − 1 ≈ 0.62 < 2 = 𝑁(1)



Inductive Step

Inductive Hypothesis: Suppose that 𝑁 ℎ > 𝜙ℎ − 1 for ℎ < 𝑘. 

Inductive Step: We show 𝑁 𝑘 > 𝜙𝑘 − 1.

𝑁 𝑘 = 𝑁 𝑘 − 1 + 𝑁 𝑘 − 2 + 1                   definition of 𝑁()

> 𝜙𝑘−1 − 1 + 𝜙𝑘−2 − 1 + 1 by IH (note we need a strong hypothesis here)

= 𝜙𝑘−1 + 𝜙𝑘−2 − 1 algebra

= 𝜙𝑘−2 𝜙 + 1 − 1

= 𝜙𝑘−2 𝜙2 − 1                                              fact from last slide

= 𝜙𝑘+1 − 1



What’s the point?

The number of nodes in an AVL tree of height ℎ is always at least 𝜙ℎ −
1

So in an AVL tree with 𝑛 elements, the height is always at most 
log𝜙 𝑛 + 1

In big-O terms, that’s enough to say the height is Θ log 𝑛 .

So our AVL trees really do have Θ(log 𝑛) worst cases for insert, find, and 
delete!



Is the improvement worth it?



Wrap Up

Was this…worth it?

That was a lot of work (and there are going to be a lot of pointers to 
move around to actually make those trees…)

Is going from 𝑛 to log 𝑛 a good enough improvement?



Wrap Up

Insert Find Delete

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Array Θ(𝑛) Θ(𝑛) Θ 𝑛

Sorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ(𝑛) Θ(log 𝑛) Θ(𝑛)

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)



Does It Matter?

Θ(log 𝑛) is the most common running time between Θ(1) and Θ(𝑛).

Which of these times is log 𝑛 between?

Θ(1) A Θ(𝑛0.01) B Θ(𝑛0.1) C Θ(𝑛0.5) D Θ(𝑛)

Fill out the poll everywhere so 

Robbie knows how much to explain

Pollev.com/robbie



Does It Matter?

We sped up from Θ(𝑛) to Θ(log 𝑛).

Suppose we could handle an input of size 𝑘 with the Θ(𝑛) 
algorithm. If the constant factors are small (and similar) 
we’ll be able to handle an input of size 2𝑘 in the same time.

Is squaring the size of the input an issue?

For Θ(𝑛) algorithms, yes, it will almost square the time it takes.
-“Almost” is because the constant factors don’t change.

For Θ(log 𝑛) algorithms, no. You’ll at most double the time it takes.
-“At most” because the lower order terms change differently.



Does It Matter?

Let’s say you have an algorithm that takes 𝑛 milliseconds or log2 𝑛 
milliseconds. How long does it take to run when 𝑛 is…

1000 10000 100000 1000000 10000000 100000000

𝒍𝒐𝒈𝟐 𝒏 0.010 s 0.013s 0.017s 0.020s 0.023s 0.027s

𝒏 1 second 10 seconds 2 minutes 17 minutes 2.7 hours 1 day

log2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒) ≈ 268.

Constant factors do matter, (and for reasons you’ll learn in 351, constant 

factors get worse as your dataset gets bigger) but you can’t make a dataset 

so big that the log2(𝑛) part will be what makes it intractable.



Other Dictionaries

There are lots of flavors of self-balancing search trees

“Red-black trees” work on a similar principle to AVL trees.

“Splay trees”

-Get 𝑂(log 𝑛) amortized bounds for all operations.

“Scapegoat trees”

“Treaps” – a BST and heap in one (!)

Similar tradeoffs to AVL trees.

Next week: A completely different idea for a dictionary

Goal: 𝑂(1) operations on average, in exchange for 𝑂(𝑛) worst case. 



Wrap Up

AVL Trees:

𝑂(log 𝑛) worst case find, insert, and delete.

Pros:

Much more reliable running times than regular BSTs.

Cons: 

Tricky to implement

A little more space to store subtree heights



Aside: Traversals



Aside: Traversals

What if, to save space, we didn’t store heights of subtrees.

How could we calculate from scratch?

We could use a “traversal”

int height(Node curr){

 if(curr==null) return -1;

 int h = Math.max(height(curr.left),height(curr.right));

 return h+1;

}



Three Kinds of Traversals

InOrder(Node curr){

 InOrder(curr.left);

 doSomething(curr);

 InOrder(curr.right);

}

PreOrder(Node curr){

 doSomething(curr);

 PreOrder(curr.left);

 PreOrder(curr.right);

}

PostOrder(Node curr){ 

 PostOrder(curr.left);

 PostOrder(curr.right);

 doSomething(curr);

}



Traversals 

If we have 𝑛 elements, how long does it take to calculate height?

 Θ(𝑛) time. 

The recursion tree (from the tree method) IS the AVL tree!

We do a constant number of operations at each node

In general, traversals take Θ 𝑛 ⋅ 𝑓(𝑛)  time, 

where doSomething()takes Θ 𝑓 𝑛  time.



Optional: Some more math 
slides



Right Left Rotation
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What happens if you try to solve the 𝑁() 
recurrence?

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1

= 𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 𝑁 ℎ − 2 + 1

= 2𝑁 ℎ − 2 + 𝑁 ℎ − 3 + 1 + 1

= 2 𝑁 ℎ − 3 + 𝑁 ℎ − 4 + 1 + 𝑁 ℎ − 3 + 1 + 1

= 3𝑁 ℎ − 3 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 3 𝑁 ℎ − 4 + 𝑁 ℎ − 5 + 1 + 2𝑁 ℎ − 4 + 2 + 1 + 1

= 5𝑁 ℎ − 4 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5 𝑁 ℎ − 5 + 𝑁 ℎ − 6 + 1 + 3𝑁 ℎ − 5 + 3 + 2 + 1 + 1

= 5𝑁 ℎ − 6 + 8𝑁 ℎ − 5 + 5 + 3 + 2 + 1 + 1
…
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