
Dictionaries I CSE 332 Spring 2025

Lecture 7

Logistics

Monday Tuesday Wednesday Thursday Friday

This

Week

TODAY

Ex 2 due

Ex 3 due

Ex 4 out

Next

Week

Ex 5 out Ex 4 due

Warm Up

Write a recurrence to represent the running time of this code

CSE 373 SU 18 - ROBBIE WEBER 3

int Mystery(int n){

 if(n <= 5)

 return 1;

 for(int i=0; i<n; i++){

 for(int j=0; j<n; j++){

 System.out.println(“hi”);

 }

 }

 return n*Mystery(n/2);

}

𝑇 𝑛 = ቐ
2 if 𝑛 ≤ 5

𝑇
𝑛

2
+ 3𝑛2 + 2𝑛 + 2 otherwise

Outline

Some Last Comments on Tree Method

Two new (old?) ADTs
-Dictionaries

-Sets

Review BSTs

Intro AVL trees

Some Last Comments on Recurrences

Extra video this week with another example of using the tree method
coming soon.

You’ll end up with a summation (level 0 to level height - 1)
-Sometimes you need a formula to find the closed-form. We have a reference sheet
with the ones you need.

There are many possible effects of the multiple levels
-Sometimes the root level is the dominant term

-Sometimes every level is equal

-Sometimes the last level is the dominant term

Don’t ignore the levels after the root! In section examples we’ll skip the
base case level; it’s within a constant factor of the level before, so even if
it’s the biggest one you’ll get the correct big-O from the level before.

https://courses.cs.washington.edu/courses/cse332/25sp/exercises/useful_math_identities.pdf

Our Next ADT

Dictionary ADT

find(key) – returns the stored value

associated with key.

state

behavior
Set of (key, value) pairs

delete(key) – removes the key and its value

from the dictionary.

insert(key, value) – inserts (key, value) pair.

If key was already in dictionary, overwrites

the previous value.

Real world intuition:

keys: words

values: definitions

Dictionaries are

often called “maps”

Our Next ADT

Set ADT

find(element) – returns true if element is in

the set, false otherwise.

state

behavior
Set of elements

delete(key) – removes the key and its value

from the dictionary.

insert(element) – inserts element into the

set.

Usually implemented

as a dictionary with

values “true” or “false”

Later in the course

we’ll want more

complicated set

operations like

union(set1, set2)

Uses of Dictionaries

Dictionaries show up all the time.

There are too many applications to really list all of them:
-Phonebooks

-Indexes

-Databases

-Operating System memory management

-The internet (DNS)

-…

Any time you want to organize information for easy retrieval.

We’re going to design two completely different implementations of
Dictionaries – (and we might do a third at the end of the quarter).

Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List

Unsorted Array

Sorted Linked List

Sorted Array

What are the worst case running times for each operation if you have 𝑛

(key, value) pairs.

Assume the arrays do not need to be resized.

Think about what happens if a repeat key is inserted! (need to replace value)

Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Array Θ(𝑛) Θ(𝑛) Θ 𝑛

Sorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ(𝑛) Θ(log 𝑛) Θ(𝑛)

What are the worst case running times for each operation if you have 𝑛

(key, value) pairs.

Assume the arrays do not need to be resized.

Think about what happens if a repeat key is inserted!

A Better Implementation

What about BSTs?

Keys will have to be comparable…

Insert Find Delete

Average

Worst

A Better Implementation

What about BSTs?

Keys will have to be comparable…

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛)

Let’s talk about how to implement delete.

Deletion from BSTs

Deleting will have three steps:
-Finding the element to delete

-Removing the element

-Restoring the BST property

Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?

6

72

84

9

Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?
6

72

84

9

Deleting a leaf:

Just get rid of it.

Delete(7)

Deletion – Easy Cases

What if the elements to delete is:
-A leaf?

-Has exactly one child?

6

72

84

9

Deleting a node with one

child:

Delete the node

Connect its parent and child

Delete(4)

Deletion – The Hard Case

What happens if the node to delete has two children?

4

52

73

9

8 106

What if we try

Delete(7)?

What can we replace it

with?

6 or 8

The biggest thing in left

subtree or smallest thing in

right subtree.

Predecessor/Successor

The predecessor of 𝑥 is the greatest node less than 𝑥.

The successor of 𝑥 is the smallest node bigger than 𝑥.

How do we find?

If 𝑥 has two children, these are in 𝑥’s subtree by BST condition

The predecessor must be in 𝑥’s left subtree (it’s smaller), and it has to be
as far right as possible in that subtree (since it’s biggest).

The successor must be in 𝑥’s right subtree (it’s bigger), and it has to be
as far left as possible in that subtree (since it’s smallest).

You can find these easily!

Deletion Overall

Locate the node-to-be-deleted.

If it’s an easy case (no children, one child) handle it by rearranging
pointers.

Otherwise, find the predecessor or successor
-The predecessor/successor always has at most one child

-If it’s the largest thing in the subtree, there can’t be anything to its right/smallest
can’t have anything to its left. (symmetric for smallest in subtree)

Delete predecessor or successor (we’re in one of the easy cases!)

Place predecessor or successor data in location of node-to-be-deleted.

A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛)

A Better Implementation

What about BSTs?

Keys will have to be comparable.

Insert Find Delete

Average Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Worst Θ(𝑛) Θ(𝑛) Θ(𝑛)

We’re in the same position we were in for heaps

BSTs are great on average,

but we need to avoid the worst case.

Avoiding the Worst Case

Take I:

Let’s require the tree to be complete.

It worked for heaps!

What goes wrong?
-When we insert, we’ll break the completeness property.

Insertions always add a new leaf, but you can’t control where.
-Can we fix it?

Not easily :/

Avoiding the Worst Case

Take II:

Here are some other requirements you might try. Could they work? If
not, what can go wrong?

Root Balanced: The root must have the same number of nodes in its

left and right subtrees

Recursively Balanced: Every node must have the same number of

nodes in its left and right subtrees.

Root Height Balanced: The left and right subtrees of the root must

have the same height.

Avoiding the Worst Case

Take III:

The AVL condition

This actually works. To convince you it works, we have to check:
1. Such a tree must have height 𝑂(log 𝑛) .

2. We must be able to maintain this property when inserting/deleting

Going to argue 2 first.

AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Warm-Up
AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Is this a valid AVL tree? 4

52

73

9

8 106

Are These AVL Trees?

6

42

73

9

8 105

4

52

73

9

8 10

6

Insertion

What happens if when we do an insertion, we break the AVL condition?

1

2

3
1

2

3

Insertion

After you insert, check each node back up for balance

You rebalance at the lowest problem node
-The lowest node at which the AVL condition is violated---heights differ by 2+.

Then ask “what directions were the insertion from here” for two levels
from lowest problem node
-There’s a case for each of the 4 combinations:

-Left-left

-Left-right

-Right-left

-Right-right

Insertion

here

Rest of

the tree

Left Single Rotation
(insert happened ->right->right)

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

x

y

z

A B

C D

BALANCED

Subtrees are equal heights

Left Single Rotation

From lowest-problem node, insertion happened in right child’s right
subtree.

Let 𝑥 be problem node, 𝑦 be 𝑥’s right child, 𝑧 be 𝑦’s right child.

Let 𝑎 = x. left, b = y. left, c = z. left, d = z. right //only need some of these.

Let 𝑦. left=𝑥; 𝑦. right = 𝑧.

Let 𝑥.right=𝑏, //don’t need to update x.left, already correct value

//Don’t need to update z’s pointers

Let 𝑥’s parent point to 𝑦. // will have to implement this via recursion.

Is it a BST Still?

From pre-insertion ordering, we know

𝑥 < 𝑦 < 𝑧

𝐴 < 𝑥

𝑥 < 𝐵 < 𝑦

𝑦 < 𝐶 < 𝑧

𝑧 < 𝐷

Post-insertion, 𝑥, 𝑦, 𝑧 in appropriate spots relative to each other

𝐴 left of 𝑥, 𝐵 between 𝑥 and 𝑦. 𝐶 between 𝑦 and 𝑧, 𝐷 right of 𝑧

So we’re still a BST! :D

Are We balanced now?

Intuitively: 𝑧 got longer, so it must be the too-long side.

Rotation lengthened left subtree by 1, shrunk right subtree by 1.

Subtrees differed by 2 (since invariant kept us off-by-one before), now
we are balanced!

The tree now has its pre-insertion height, so our ancestors don’t have to
worry!

Sketch of balance proof

Insertion

here

Left Single Rotation
(insert happened ->right->right)

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

𝑘 𝑘 + 2

Let height of 𝐴 be 𝑘.

Insertion adjusts heights by ≤ 1.

Since 𝑥 is imbalanced now, right

subtree must have height 𝑘 + 2

after insertion.

Insertion

here

Left Single Rotation
(insert happened ->right->right)

x

y

z

Rest of

the tree UNBALANCED

Right subtree is 2 longer

A
B

C D

𝑘

Cl: 𝑧 has height 𝑘 + 1

𝑦 had height 𝑘 + 2, and right

subtree must be longer side to

cause imbalance).

Cl: 𝐵 has height 𝑘.
𝑦 was balanced before insertion.

For an imbalance to happen at 𝑥,

𝑧’s increase in height must have

increased height of tree rooted at

𝑦. So 𝐵 must have height ≤ 𝑘.

But 𝑦 is balanced now (𝑥 is lowest

imbalanced), so height ≥ 𝑘
⇒height is 𝑘.

𝑘 + 1
𝑘

Rest of

the tree

Left Single Rotation
(insert happened ->right->right)

x

y

z

A B

C D

BALANCED

Subtrees are equal heights

𝑘 + 1

𝑘
𝑘

𝑘 + 1

𝑦 is balanced (both subtrees

height 𝑘 + 1).

𝑥 is balanced (both subtrees

height 𝑘).

𝑧 is balanced (was not a

problem node in recursion,

and haven’t rearranged its

descendants).

Rest of

the tree

Left Single Rotation
(insert happened ->right->right)

x

y

z

A B

C D

BALANCED

Subtrees are equal heights

𝑘 + 1

𝑘
𝑘

𝑘 + 1

What about 𝑦’s parent?

Post rotation, this tree has

height 𝑘 + 2
Post-insertion, pre-rotation,

tree had height 𝑘 + 3, so pre-

insertion, pre-rotation, tree

had height 𝑘 + 2.

The height is the same now,

so our parent must be

balanced! No need to even

check after this---no more

rotations needed.

The Other Cases

We’ll sketch them next time.

Sometimes you need more than one rotation, but you never need more
than two!

Efficient?

Bounding the Height

Suppose you have a tree of height ℎ, meeting the AVL condition.

What is the minimum number of nodes in the tree?

If ℎ = 0, then 1 node

If ℎ = 1, then 2 nodes.

In general?

AVL condition: For every node, the height of its left subtree and

right subtree differ by at most 1.

Bounding the Height

In general, let 𝑁() be the minimum number of nodes in a tree of height
ℎ, meeting the AVL requirement.

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

We can try the tree method.

Bounding the Height

𝑁 ℎ = ቐ
1 if ℎ = 0
2 if ℎ = 1

𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 otherwise

When we do we’ll quickly realize:
-Something with Fibonacci numbers is going on.

-It’s really hard to exactly describe the pattern.

The real solution (using deep math magic beyond this course) is

𝑁 ℎ ≥ 𝜙ℎ − 1 where 𝜙 is
1+ 5

 2
≈ 1.62

Lazy Deletion

Aside: Lazy Deletion

Lazy Deletion: A general way to make delete() more efficient.
(specifically, as efficient as find())

Don’t remove the entry from the structure, just “mark” it as deleted.

Benefits:
-Much simpler to implement

-More efficient (no need to shift values on every single delete)

Drawbacks:
-Extra space:

-For the flag

-More drastically, data structure grows with all insertions, not with the current
number of items.

-Sometimes makes other operations more complicated.

Simple Dictionary Implementations

Insert Find Delete

Unsorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Unsorted Array Θ(𝑚) Θ(𝑚) Θ 𝑚

Sorted Linked List Θ(𝑚) Θ(𝑚) Θ(𝑚)

Sorted Array Θ(𝑚) Θ(log 𝑚) Θ(log 𝑚)

We can do slightly better with lazy deletion, let 𝑚 be the total number of

elements ever inserted (even if later lazily deleted)

Think about what happens if a repeat key is inserted!

	Slide 1: Dictionaries I
	Slide 2: Logistics
	Slide 3: Warm Up
	Slide 4: Outline
	Slide 5: Some Last Comments on Recurrences
	Slide 6: Our Next ADT
	Slide 7: Our Next ADT
	Slide 8: Uses of Dictionaries
	Slide 9: Simple Dictionary Implementations
	Slide 10: Simple Dictionary Implementations
	Slide 11: A Better Implementation
	Slide 12: A Better Implementation
	Slide 13: Deletion from BSTs
	Slide 14: Deletion – Easy Cases
	Slide 15: Deletion – Easy Cases
	Slide 16: Deletion – Easy Cases
	Slide 17: Deletion – The Hard Case
	Slide 18: Predecessor/Successor
	Slide 19: Deletion Overall
	Slide 20: A Better Implementation
	Slide 21: A Better Implementation
	Slide 22: Avoiding the Worst Case
	Slide 23: Avoiding the Worst Case
	Slide 24: Avoiding the Worst Case
	Slide 25: Warm-Up
	Slide 26: Are These AVL Trees?
	Slide 27: Insertion
	Slide 28: Insertion
	Slide 29: Left Single Rotation (insert happened ->right->right)
	Slide 30: Left Single Rotation
	Slide 31: Is it a BST Still?
	Slide 32: Are We balanced now?
	Slide 33: Sketch of balance proof
	Slide 34: Left Single Rotation (insert happened ->right->right)
	Slide 35: Left Single Rotation (insert happened ->right->right)
	Slide 36: Left Single Rotation (insert happened ->right->right)
	Slide 37: Left Single Rotation (insert happened ->right->right)
	Slide 38: The Other Cases
	Slide 39: Efficient?
	Slide 40: Bounding the Height
	Slide 41: Bounding the Height
	Slide 42: Bounding the Height
	Slide 43: Bounding the Height
	Slide 44: Lazy Deletion
	Slide 45: Aside: Lazy Deletion
	Slide 46: Simple Dictionary Implementations

