
Algorithm Analysis 3
Amortization; Recurrences

CSE 332 Spring 2025

Lecture 6

1

Amortization

2

Amortization

How much does housing cost per day in Seattle?

Well, it depends on the day.

The day rent is due, it’s $1800.

The other days of the month it’s free.

3

Amortization

Amortization is an accounting analysis. It’s a way to reflect the fact that
even though the “first of the month” is very expensive, the reason that
it’s very expensive is that it’s taking on responsibility for all the other
days.

If we distributed the cost equally across the days, (because all days
should be equally responsible), we “amortize” the cost.

4

Amortization

AMORTIZED

5

It costs $1800/month (which we
pay once)

So the cost per day is
1800

30
= 60.

Good answer if the question is
“what does my daily pay need to
be to afford housing?“

UNAMORTIZED

On the first it costs $1800.

Every other day of the month it
costs $0

Good answer if the question is
“how much do I need to keep in
my bank account so it doesn’t get
overdrawn?”

Amortization

What’s the worst case for enqueue into an array-based queue?
-The running time is 𝑂(𝑛) when we need to resize, and 𝑂(1) otherwise.

Is 𝑂(𝑛) a good description of the worst-case behavior?

Imagine you said:
“In the worst-case, rent costs $1800 per day. There are 30 days this
month, so I need to set aside 30 ⋅ 1800 = $54,000 in my budget; that’s
the worst-case for the month”

Or you said on Apr. 30, “rent costs $60/day, it’s fine that I have only $70
in my bank account”
-Both of these are silly!

6

Amortization

AMORTIZED

7

It takes 𝑂(𝑛) time to resize once,
the next 𝑛 − 1 calls take 𝑂(1)
time each.

So the cost per operation is
𝑂 𝑛 +[𝑛−1]𝑂(1)

𝑛
= 𝑂(1)

Good answer if the question is
“what will happen when I do
many insertions in a row?“

UNAMORTIZED

The resize will take 𝑂(𝑛) time.
That’s the worst thing that could
happen.

Good answer if the question is
“how long might one (unlucky)
user need to wait on a single
insertion?”

Amortization

The most common application of amortized bounds is for
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑚 insertions?

We might need to double a bunch, but the total resizing work is at most
𝑂(𝑚)

And the regular insertions are at most m ⋅ 𝑂 1 = 𝑂(𝑚)

So 𝑚 insertions take 𝑂(𝑚) work total

Or amortized
𝑂(𝑚)

𝑚
= 𝑂(1) time.

8

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?

…

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?
…

Every term in the summation fills half of

the gap and leaves half the gap

(because it’s half as big).

but then the next term will fill only half

the gap again (because it’s half as big).

Half the total is in the first term, half the

remaining total is in the next, …

Amortization

Why do we double? Why not increase the size by 10,000 each time we
fill up?

How much work is done on resizing to get the size up to 𝑚?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑚

10000 10000𝑖 ≈ 10,000 ⋅
𝑚2

10,0002 = 𝑂(𝑚2)

The other inserts do 𝑂 𝑚 work total.

The amortized cost to insert is 𝑂
𝑚2

𝑚
= 𝑂(𝑚).

Much worse than the 𝑂(1) from doubling!

13

Amortization vs. Average-Case

Amortization and “average/best/worst” case are independent properties
(you can have un-amortized average-case, or amortized worst-case, or
un-amortized worst-case, or …).

Average case asks: “if I selected a possible input on random, how long
would my code take?” (compare to worst-case: “if I select the worst
value…”)

Amortized or not is “do we care about how much our bank account
changes on one day or over the entire month?” (do we care about the
running time of individual calls or only what happens over a sequence
of them?)

14

Why use (or don’t use) amortized analysis?

The appropriate analysis depends on your situation (and often it’s worth
knowing both).

A common use of data structures is as part of an algorithm.
-E.g., I’m trying to process everything in a data set, I insert everything into the data
structure, remove them one at a time.

-In that case, we almost always want amortized analysis (we care about when the
full analysis is done, not when we go from 49% done to 50% done).

But sometimes you care about individual calls
-Your data structure is feeding another process that the user is watching in real-
time.

Worst Case Amortized Unamortized

Enqueue (circular array) Θ(1) Θ(𝑛)

O, Omega, Theta vs. best/worst

16

𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”

17

Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best-case, linear search

will take at most as much time as

binary search ever takes. That is,

it’s 𝑂(log 𝑛) .

In the best case, linear search still

has to look at array index 0; those

operations still take time, so you

will take at least Ω(1) time.

In the best case, linear-

search is both 𝑂(1) and

Ω 1 so it is Θ(1).

Worst-

Case

Analysis

In the worst-case, binary search

will take at most as much time as

linear search ever takes. That is,

it’s 𝑂(𝑛).

In the worst-case, linear search will

check at least as many locations in

the array as binary search does in

the worst-case, so it will take at

least Ω(log n) time

In the worst-case, binary

search takes Θ(log 𝑛) time.

In the worst-case, linear

search takes Θ(𝑛) time.

18

Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best case, my algorithm is

pretty good, it takes at most

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this

algorithm still takes a while; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case

Analysis

Even in the worst-case my

algorithm, isn’t that bad! It takes

at most 𝑂(𝑡𝑖𝑚𝑒) time in the

worst-case

In the worst-case, there’s still a lot

of work the algorithm has to do; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

19

Recursive Code Analysis

Calculating Running Times

Here’s some code for calculating the length of a linked list:

What’s its running time?

Length(Node curr){

 if(curr.next == null)

 return 1;

 return 1 + Length(curr.next);

}

We can analyze all the “non-recursive” work like usual

What about the recursive work?
21

Writing a Recurrence

If the function runs recursively, our formula for the running time should
probably be recursive as well.

Such a formula is a recurrence.

𝑇 𝑛 = ቊ
𝑇 𝑛 − 1 + 2 if 𝑛 > 1

 1 otherwise

What does this say?

The input to 𝑇 is the size of the input to the Length.
-If the input to 𝑇() is large, the running time depends on the recursive call.

-If not, we can just use the base case.

22

Another example

Mystery(int n){

 if(n == 1)

 return 1;

 for(int i=0; i < n*n; i++){

 for(int j = 0; j < n; j++){

 System.out.println(“hi!”);

 }

 }

 return Mystery(n/2)

}

23

Another example

Mystery(int n){

 if(n == 1)

 return 1;

 for(int i=0; i < n*n; i++){

 for(int j = 0; j < n; j++){

 System.out.println(“hi!”);

 }

 }

 return Mystery(n/2)

}

24

𝑇 𝑛 = ቊ 𝑇 𝑛/2 + 𝑛3 + 𝑛2 + 1 if 𝑛 > 1
 1 otherwise

Try It On Your Own

25

Mystery(int n){

 if(n <= 4)

 return 1;

 for(int i=0; i < n; i++){

 if(i % 3 == 2)

 break;

 }

 return Mystery(n - 5)

}

Try It On Your Own

26

Mystery(int n){

 if(n <= 4)

 return 1;

 for(int i=0; i < n; i++){

 if(i % 3 == 2)

 break;

 }

 return Mystery(n - 5)

}

𝑇 𝑛 = ቊ
𝑇 𝑛 − 5 + 3 if 𝑛 > 4

 1 otherwise

What Do We Do With That

That’s nice. So what’s the big-Θ bound?

27

Tree Method

Idea:

-Since we’re making recursive calls, let’s just draw out a tree, with one
node for each recursive call.

-Each of those nodes will do some work, and (if they make more
recursive calls) have children.

-If we can just add up all the work, we can find a big-Θ bound.

28

Solving Recurrences II:

29

n

n

2

n

2

n

4

n

4

n

4

n

4

n

8

n

8

n

8

n

8

n

8

n

8

n

8

n

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

3𝑛

3𝑛

2

3𝑛

2

3𝑛

4

3𝑛

4

3𝑛

4

3𝑛

4

Work

3𝑛

8

2

3𝑛

8

3𝑛

8

3𝑛

8
3𝑛

8

3𝑛

8

3𝑛

8
3𝑛

8

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise
Size of

input

Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. What is the input size at level 𝑖?

- 𝑖= 0 is overall root level.

2. At each level 𝑖, how many calls are there?

3. At each level 𝑖, how much work is done??

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree?

5. What is the work done at the last level?

6. Combine and Simplify

30

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = ෍

𝑖=0

𝑙𝑎𝑠𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙

𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠 𝑖 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 ⋅ 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑙𝑙𝑠

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise

Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. What is the input size at level 𝑖?

- 𝑖= 0 is overall root level.

2. At each level 𝑖, how many calls are there?

3. At each level 𝑖, how much work is done??

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree?

5. What is the work done at the last level?

6. Combine and Simplify

31

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = ෍

𝑖=0

𝑙𝑎𝑠𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙

𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠 𝑖 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 ⋅ 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑙𝑙𝑠

2𝑖

(𝑛/2𝑖)

෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖

2 ⋅ 2log2 𝑛 = 2𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖
+ 2𝑛 = 𝑛 log2 𝑛 + 2𝑛

2𝑖(𝑛/2𝑖) = 𝑛

(𝑛/2𝑖) = 1 → 2𝑖 = 𝑛 → 𝑖 = log2 𝑛

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise

Let’s try another

𝑇 𝑛 = ൝
3𝑇

𝑛

4
+ 𝑐𝑛2 if 𝑛 > 5

5 otherwise

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 33

𝑐n2

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

… …… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following

questions:

1. What is input size on

level 𝑖?
2. Number of nodes at

level 𝑖?
3. Work done at

recursive level 𝑖?
4. Last level of tree?

5. Work done at base

case?

6. What is sum over all

levels?

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐
n

4

2

𝑐
n

4

2

𝑐
n

4

2𝑛

4
𝑛

4

𝑛

4

𝑛
𝑐𝑛2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

5 5

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 34

Level (i)
Number of

Nodes

Work per

Node

Work per

Level

0 1 𝑐𝑛2 𝑐𝑛2

1 3 𝑐
𝑛

4

2 3

16
𝑐𝑛2

2 32 𝑐
𝑛

42

2 3

16

2

𝑐𝑛2

𝑖 3𝑖 𝑐
𝑛

4𝑖

2 3

16

𝑖

𝑐𝑛2

Base =

log4𝑛 − 1
3log4 𝑛−1 5

5

3
𝑛log4 3

1. Input size on level 𝑖?

2. How many calls on level 𝑖?

3. How much work on level 𝑖?

4. What is the last level?

5. A. How much work for each leaf node?

 B. How many base case calls?

𝑛

4𝑖

𝑐
𝑛

4𝑖

2

When
𝑛

4𝑖 = 4 → log4 𝑛 − 1

5

𝑇 𝑛 =
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6. Combining it all together…

3𝑖𝑐
𝑛

4𝑖

2

=
3

16

𝑖

𝑐𝑛2

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 +
5

3
𝑛log

4
3

3log4 𝑛−1 =
3log4 𝑛

3 power of a log

𝑥log𝑏 𝑦 = 𝑦log𝑏 𝑥

=
𝑛log4 3

3

3𝑖

Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 35

𝑇 𝑛 = ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 +
5

3
𝑛log

4
3

𝑇 𝑛 ≤ 𝑐𝑛2
1

1 −
3

16

+
5

3
𝑛log

4
3

𝑇 𝑛 = 𝑐𝑛2

3
16

log4 𝑛−1

− 1

3
16 − 1

+
5

3
𝑛log

4
3

𝑇 𝑛 ∈ 𝑂(𝑛2)

෍

𝑖=𝑎

𝑏

𝑐𝑓(𝑖) = 𝑐 ෍

𝑖=𝑎

𝑏

𝑓(𝑖)

factoring out a

constant
𝑇 𝑛 = 𝑐𝑛2 ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

+
5

3
𝑛log

4
3

෍

𝑖=0

𝑛−1

𝑥𝑖 =
𝑥𝑛 − 1

𝑥 − 1

finite geometric series

෍

𝑖=0

∞

𝑥𝑖 =
1

1 − 𝑥

infinite geometric

series

when -1 < x < 1

If we’re trying to prove upper bound…

𝑇 𝑛 ≤ 𝑐𝑛2 ෍

𝑖=0

∞
3

16

𝑖

+ 4𝑛log
4
3

Closed form:

7. Simplify…

What about an upper bound on:

𝑇 𝑛 = 𝑐𝑛2

3
16

log4 𝑛−1

− 1

3
16

 − 1
+

5

3
𝑛log

4
3

𝑇 𝑛 = 𝑐𝑛2
1−

3

16

log4 𝑛−1

1−
3

16

+
5

3
𝑛log43 ≥ 𝑐𝑛2

1−
3

16

1−
3

16

+
5

3
𝑛log43

Which is ∈ Ω(𝑛2)

A Note About Base Cases

Except in very rare circumstances, your code looks like

if(n < constant)

 Do something

else

 Make recursive call(s) and do something.

(might have more base cases or edge cases, but core idea is this)

Do Something for n<constant is Θ 1 , even if do something
doesn’t look constant

(52 or 2100 are both constants, so 𝑛2 for 𝑛 = 5 is still Θ(1))

So changing constant

But Don’t skip the base case

Sometimes there’s so many recursive calls (and so little non-recursive
work) that most of the work happens at the base case

Try making the tree for 𝑇 𝑛 = ൝
3𝑇

𝑛

2
+ 1 if 𝑛 ≥ 2

1 otherwise

There’s 𝑛log _2(3) ≫ 𝑛 base case nodes, you need to account for that!

For Ex3, we let you choose your base case. Choose 𝑛 ≥ 2 or 𝑛 > 2 or
𝑛 ≥ 1024 etc. whatever makes the math easier for you. But don’t just
skip it or you might get the wrong result!

More Practice

Warm Up

Write a recurrence to describe the running time of Mystery.

If you have extra time, find the big-Θ running time.

Mystery(int[] arr){

 if(arr.length == 1)

 return arr[0];

 else if(arr.length == 2)

 return arr[0] + arr[1];

 //copies all but first two elements of arr.

 int[] smaller = Arrays.copyOfRange(arr, 2, arr.length);

 return a[0] + a[1] + Mystery(smaller);

}

CSE 373 SU 18 - ROBBIE WEBER 40

Warm Up

𝑇 𝑛 = ቐ
1 if 𝑛 = 1
2 if 𝑛 = 2

𝑇 𝑛 − 2 + 4 otherwise

CSE 373 SU 18 - ROBBIE WEBER 41

Solving Recurrences I: Binary Search

42

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

Solving Recurrences I: Binary Search

43

𝑇 𝑛 =
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

…

𝑛

𝑛/2

𝑛/22

1

1

1

1

1

Solving Recurrences I: Binary Search

44

𝑇 𝑛 =

1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Level Input Size Work/call Work/level

0 𝑛 1 1

1 𝑛/2 1 1

2 𝑛/22 1 1

𝑖 𝑛/2𝑖 1 1

log2𝑛 1 1 1

σ
𝑖=0
log2 𝑛−1

1 + 1 = log2(𝑛) + 1

0. Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify

Extra Amortization Example

45

A Contrived Example

A MakesYouWaitList operates as follows:

When you call find(), it does a linear search through an array of 𝑛
elements to find 𝑖.If the index is odd, it spins for 𝑂(𝑛) time, if the index
is even it spins for 𝑂(𝑛2) time. Additionally, every 𝑛th call to find it spins
for 𝑂(𝑛2.5) time. It looks like this:

46

class MakesYouWaitList{

 int callsToFind=0; Object arr[]

find(Object o){

 n=arr.length

 int indexOfI=LinearSearch(o);

 if(indexOfI % 2 == 1)

 for(int k=0; k<n; k++) { }

 else

 for(int k=0; k<n*n; k++) { }

 callsToFind++;

 if(callsToFind == n) {

 callsToFind = 0;

 for(int k=0; k<Math.pow(n,2.5); k++) { }

 }

}
47

All the running times

Best Worst Average

Amortized 𝑂 𝑛1.5 Every 𝑛 operations

trigger the last 𝑛2.5 spin

time. No matter what

elements are chosen. The

best choices (all at even

indices) will add 𝑛 work

each, which is a lower order

term.

𝑂(𝑛2) On an odd input we

take 𝑂 𝑛2 . The O(𝑛1.5) we

want to assign to each for the

big spin-time at the end is a

lower order term.

𝑂 𝑛2 On average, half the

inputs will be at odd indices and

half even, so we’ll have:
𝑛

2
𝑂 𝑛 +

𝑛

2
𝑂 𝑛2 + 𝑂 𝑛2.5

work, which is 𝑂(𝑛3) total.

Giving each of the 𝑛 operations

its share we get 𝑂(𝑛2)

Unamortized 𝑂(𝑛) as long as the element

is stored at an even index

and doesn’t trigger the

resize, we’ll get 𝑂(𝑛) time.

𝑂(𝑛2) The worst-case total

work for 𝑛 operations is for all

to be odd 𝑛 ⋅ 𝑂 𝑛2 , and one

to trigger the resize 𝑂(𝑛2.5).

The total is 𝑂(𝑛3), which we

distribute equally among the

𝑛 inserts.

𝑂(𝑛2) We have a 1/𝑛 chance of

causing the 𝑂(𝑛2.5) spin, a ½

chance of getting 𝑂(𝑛) and ½

of 𝑂(𝑛2), this gives:
1

𝑛
⋅ 𝑂 𝑛2.5 +

1

2
𝑂 𝑛 +

1

2
𝑂(𝑛2)

Which gives 𝑂(𝑛2)

48

	Slide 1: Algorithm Analysis 3 Amortization; Recurrences
	Slide 2: Amortization
	Slide 3: Amortization
	Slide 4: Amortization
	Slide 5: Amortization
	Slide 6: Amortization
	Slide 7: Amortization
	Slide 8: Amortization
	Slide 9: Total Resizing work
	Slide 10: Total Resizing work
	Slide 11: Summation Intuition
	Slide 12: Summation Intuition
	Slide 13: Amortization
	Slide 14: Amortization vs. Average-Case
	Slide 15: Why use (or don’t use) amortized analysis?
	Slide 16: O, Omega, Theta vs. best/worst
	Slide 17: cap O ,cap omega ,cap theta vs. Best, Worst, Average
	Slide 18: Some Example Sentences
	Slide 19: Why Might you use it?
	Slide 20: Recursive Code Analysis
	Slide 21: Calculating Running Times
	Slide 22: Writing a Recurrence
	Slide 23: Another example
	Slide 24: Another example
	Slide 25: Try It On Your Own
	Slide 26: Try It On Your Own
	Slide 27: What Do We Do With That
	Slide 28: Tree Method
	Slide 29: Solving Recurrences II:
	Slide 30: Tree Method Formulas
	Slide 31: Tree Method Formulas
	Slide 32: Let’s try another
	Slide 33: Solving Recurrences III
	Slide 34: Solving Recurrences III
	Slide 35: Solving Recurrences III
	Slide 36
	Slide 37: A Note About Base Cases
	Slide 38: But Don’t skip the base case
	Slide 39: More Practice
	Slide 40: Warm Up
	Slide 41: Warm Up
	Slide 42: Solving Recurrences I: Binary Search
	Slide 43: Solving Recurrences I: Binary Search
	Slide 44: Solving Recurrences I: Binary Search
	Slide 45: Extra Amortization Example
	Slide 46: A Contrived Example
	Slide 47
	Slide 48: All the running times

