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Amortization
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Amortization

How much does housing cost per day in Seattle?

Well, it depends on the day.

The day rent is due, it’s $1800.

The other days of the month it’s free. 

3



Amortization

Amortization is an accounting analysis. It’s a way to reflect the fact that 
even though the “first of the month” is very expensive, the reason that 
it’s very expensive is that it’s taking on responsibility for all the other 
days.

If we distributed the cost equally across the days, (because all days 
should be equally responsible), we “amortize” the cost.
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Amortization

AMORTIZED

5

It costs $1800/month (which we 
pay once)

So the cost per day is 
1800

30
= 60.

Good answer if the question is 
“what does my daily pay need to 
be to afford housing?“

UNAMORTIZED

On the first it costs $1800.

Every other day of the month it 
costs $0

Good answer if the question is 
“how much do I need to keep in 
my bank account so it doesn’t get 
overdrawn?”



Amortization

What’s the worst case for enqueue into an array-based queue?
-The running time is 𝑂(𝑛) when we need to resize, and 𝑂(1) otherwise.

Is 𝑂(𝑛) a good description of the worst-case behavior? 

Imagine you said:
“In the worst-case, rent costs $1800 per day. There are 30 days this 
month, so I need to set aside 30 ⋅ 1800 = $54,000 in my budget; that’s 
the worst-case for the month” 

Or you said on Apr. 30, “rent costs $60/day, it’s fine that I have only $70 
in my bank account”
-Both of these are silly!
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Amortization

AMORTIZED

7

It takes 𝑂(𝑛) time to resize once, 
the next 𝑛 − 1 calls take 𝑂(1) 
time each.

So the cost per operation is 
𝑂 𝑛 +[𝑛−1]𝑂(1)

𝑛
= 𝑂(1)

Good answer if the question is 
“what will happen when I do 
many insertions in a row?“

UNAMORTIZED

The resize will take 𝑂(𝑛) time. 
That’s the worst thing that could 
happen.

Good answer if the question is 
“how long might one (unlucky) 
user need to wait on a single 
insertion?”



Amortization

The most common application of amortized bounds is for 
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑚 insertions?

We might need to double a bunch, but the total resizing work is at most 
𝑂(𝑚)

And the regular insertions are at most m ⋅ 𝑂 1 = 𝑂(𝑚)

So 𝑚 insertions take 𝑂(𝑚) work total

Or amortized 
𝑂(𝑚)

𝑚
= 𝑂(1) time. 
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Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily 
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work? 

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)



Total Resizing work
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Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖  a lot. Why does it converge?

…



Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖  a lot. Why does it converge?
…

Every term in the summation fills half of 

the gap and leaves half the gap 

(because it’s half as big).

but then the next term will fill only half 

the gap again (because it’s half as big).

Half the total is in the first term, half the 

remaining total is in the next, …



Amortization

Why do we double? Why not increase the size by 10,000 each time we 
fill up?

How much work is done on resizing to get the size up to 𝑚?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑚

10000 10000𝑖 ≈ 10,000 ⋅
𝑚2

10,0002 = 𝑂(𝑚2)

The other inserts do 𝑂 𝑚  work total. 

The amortized cost to insert is 𝑂
𝑚2

𝑚
= 𝑂(𝑚).

Much worse than the 𝑂(1) from doubling!
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Amortization vs. Average-Case

Amortization and “average/best/worst” case are independent properties 
(you can have un-amortized average-case, or amortized worst-case, or 
un-amortized worst-case, or …). 

Average case asks: “if I selected a possible input on random, how long 
would my code take?” (compare to worst-case: “if I select the worst 
value…”)

Amortized or not is “do we care about how much our bank account 
changes on one day or over the entire month?” (do we care about the 
running time of individual calls or only what happens over a sequence 
of them?)
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Why use (or don’t use) amortized analysis?

The appropriate analysis depends on your situation (and often it’s worth 
knowing both).

A common use of data structures is as part of an algorithm.
-E.g., I’m trying to process everything in a data set, I insert everything into the data 
structure, remove them one at a time. 

-In that case, we almost always want amortized analysis (we care about when the 
full analysis is done, not when we go from 49% done to 50% done). 

But sometimes you care about individual calls
-Your data structure is feeding another process that the user is watching in real-
time. 

Worst Case Amortized Unamortized

Enqueue (circular array) Θ(1) Θ(𝑛)



O, Omega, Theta vs. best/worst
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𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case 
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”
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Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case 

Analysis

In the best-case, linear search 

will take at most as much time as 

binary search ever takes. That is, 

it’s 𝑂(log 𝑛) .

In the best case, linear search still 

has to look at array index 0; those 

operations still take time, so you 

will take at least Ω(1) time. 

In the best case, linear-

search is both 𝑂(1) and 

Ω 1  so it is Θ(1).

Worst-

Case 

Analysis

In the worst-case, binary search 

will take at most as much time as 

linear search ever takes. That is, 

it’s 𝑂(𝑛).

In the worst-case, linear search will 

check at least as many locations in 

the array as binary search does in 

the worst-case, so it will take at 

least Ω(log n) time

In the worst-case, binary 

search takes Θ(log 𝑛) time.

In the worst-case, linear 

search takes Θ(𝑛) time.
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Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case 

Analysis

In the best case, my algorithm is 

pretty good, it takes at most 

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this 

algorithm still takes a while; it 

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my 

algorithm takes exactly 

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case 

Analysis

Even in the worst-case my 

algorithm, isn’t that bad! It takes 

at most 𝑂(𝑡𝑖𝑚𝑒) time in the 

worst-case

In the worst-case, there’s still a lot 

of work the algorithm has to do; it 

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my 

algorithm takes exactly 

Θ(𝑡𝑖𝑚𝑒)
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Recursive Code Analysis



Calculating Running Times

Here’s some code for calculating the length of a linked list:

What’s its running time?

Length(Node curr){

 if(curr.next == null)

  return 1;

 return 1 + Length(curr.next);

}

We can analyze all the “non-recursive” work like usual

What about the recursive work?
21



Writing a Recurrence

If the function runs recursively, our formula for the running time should 
probably be recursive as well. 

Such a formula is a recurrence.

𝑇 𝑛 =  ቊ
𝑇 𝑛 − 1 + 2 if 𝑛 > 1

 1 otherwise

What does this say? 

The input to 𝑇 is the size of the input to the Length. 
-If the input to 𝑇() is large, the running time depends on the recursive call.

-If not, we can just use the base case.
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Another example

Mystery(int n){

 if(n == 1)

  return 1;

 for(int i=0; i < n*n; i++){

  for(int j = 0; j < n; j++){

   System.out.println(“hi!”);

  }

 }

 return Mystery(n/2)

}
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Another example

Mystery(int n){

 if(n == 1)

  return 1;

 for(int i=0; i < n*n; i++){

  for(int j = 0; j < n; j++){

   System.out.println(“hi!”);

  }

 }

 return Mystery(n/2)

}
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𝑇 𝑛 =  ቊ 𝑇 𝑛/2 + 𝑛3 + 𝑛2 + 1 if 𝑛 > 1
 1 otherwise



Try It On Your Own
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Mystery(int n){

 if(n <= 4)

  return 1;

 for(int i=0; i < n; i++){

  if(i % 3 == 2) 

   break;

 }

 return Mystery(n - 5)

}



Try It On Your Own
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Mystery(int n){

 if(n <= 4)

  return 1;

 for(int i=0; i < n; i++){

  if(i % 3 == 2) 

   break;

 }

 return Mystery(n - 5)

}

𝑇 𝑛 =  ቊ
𝑇 𝑛 − 5 + 3 if 𝑛 > 4

 1 otherwise



What Do We Do With That

That’s nice. So what’s the big-Θ bound?
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Tree Method 

Idea:

-Since we’re making recursive calls, let’s just draw out a tree, with one 
node for each recursive call.

-Each of those nodes will do some work, and (if they make more 
recursive calls) have children.

-If we can just add up all the work, we can find a big-Θ bound.
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Solving Recurrences II:
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… … … … … … … …… … …… … … … …

3𝑛

3𝑛

2

3𝑛

2

3𝑛

4

3𝑛

4

3𝑛

4

3𝑛

4
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3𝑛

8

2

3𝑛
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8

3𝑛
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8
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8
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8
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𝑇 𝑛 =  ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise
Size of 

input



Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. What is the input size at level 𝑖?

- 𝑖= 0 is overall root level. 

2. At each level 𝑖, how many calls are there?

3. At each level 𝑖, how much work is done??

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree? 

5. What is the work done at the last level?

 

6. Combine and Simplify
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𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 =  ෍

𝑖=0

𝑙𝑎𝑠𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙

𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠 𝑖 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 ⋅ 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑙𝑙𝑠

𝑇 𝑛 =  ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise



Tree Method Formulas

How much work is done by recursive levels (branch nodes)?
1. What is the input size at level 𝑖?

- 𝑖= 0 is overall root level. 

2. At each level 𝑖, how many calls are there?

3. At each level 𝑖, how much work is done??

How much work is done by the base case level (leaf nodes)?
4. What is the last level of the tree? 

5. What is the work done at the last level?

 

6. Combine and Simplify

31

𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 =  ෍

𝑖=0

𝑙𝑎𝑠𝑡𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝐿𝑒𝑣𝑒𝑙

𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠 𝑖 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝑁𝑜𝑑𝑒(𝑖)

𝑁𝑜𝑛𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑤𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘𝑃𝑒𝑟𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 ⋅ 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑙𝑙𝑠

2𝑖

(𝑛/2𝑖)

෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖

2 ⋅ 2log2 𝑛 = 2𝑛

𝑇 𝑛 =  ෍

𝑖=0

log2 𝑛−1

2𝑖
𝑛

2𝑖
+ 2𝑛 = 𝑛 log2 𝑛 + 2𝑛

2𝑖(𝑛/2𝑖) = 𝑛

(𝑛/2𝑖) = 1 → 2𝑖 = 𝑛 → 𝑖 = log2 𝑛

𝑇 𝑛 =  ቐ
2𝑇

𝑛

2
+ 3𝑛 if 𝑛 > 1

2 otherwise



Let’s try another

𝑇 𝑛 = ൝
3𝑇

𝑛

4
+ 𝑐𝑛2 if 𝑛 > 5

5 otherwise



Solving Recurrences III
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𝑐n2

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

𝑛

16

… …… … …… … …… … …… … …… … …… … …… … …… … ……

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Answer the following 

questions:

1. What is input size on 

level 𝑖?
2. Number of nodes at 

level 𝑖?
3. Work done at 

recursive level 𝑖?
4. Last level of tree?

5. Work done at base 

case?

6. What is sum over all 

levels?

𝑇 𝑛 = 
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑐
n

4

2

𝑐
n

4

2

𝑐
n

4

2𝑛

4
𝑛

4

𝑛

4

𝑛
𝑐𝑛2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2
𝑐

𝑛

16

2

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5



Solving Recurrences III
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Level (i)
Number of 

Nodes

Work per 

Node

Work per 

Level

0 1 𝑐𝑛2 𝑐𝑛2

1 3 𝑐
𝑛

4

2 3

16
𝑐𝑛2

2 32 𝑐
𝑛

42

2 3

16

2

𝑐𝑛2

𝑖 3𝑖 𝑐
𝑛

4𝑖

2 3

16

𝑖

𝑐𝑛2

Base = 

log4𝑛 − 1
3log4 𝑛−1 5

5

3
𝑛log4 3

1. Input size on level 𝑖?

2. How many calls on level 𝑖?

3. How much work on level 𝑖?

4. What is the last level? 

5. A. How much work for each leaf node?

   B. How many base case calls?

𝑛

4𝑖

𝑐
𝑛

4𝑖

2

When 
𝑛

4𝑖 = 4 → log4 𝑛 − 1

5

𝑇 𝑛 = 
5 𝑤ℎ𝑒𝑛 𝑛 ≤ 4

3𝑇
𝑛

4
+ 𝑐𝑛2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

6. Combining it all together…

3𝑖𝑐
𝑛

4𝑖

2

=
3

16

𝑖

𝑐𝑛2

𝑇 𝑛 =  ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 + 
5

3
𝑛log

4
3

3log4 𝑛−1 =
3log4 𝑛

3 power of a log

𝑥log𝑏 𝑦 = 𝑦log𝑏 𝑥

=
𝑛log4 3

3

3𝑖 



Solving Recurrences III

CSE 373 SU 18 - ROBBIE WEBER 35

𝑇 𝑛 =  ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

𝑐𝑛2 + 
5

3
𝑛log

4
3

𝑇 𝑛 ≤ 𝑐𝑛2
1

1 −
3

16

+
5

3
𝑛log

4
3

𝑇 𝑛 = 𝑐𝑛2

3
16

log4 𝑛−1

− 1

3
16  − 1

+
5

3
𝑛log

4
3

𝑇 𝑛 ∈ 𝑂(𝑛2)

෍

𝑖=𝑎

𝑏

𝑐𝑓(𝑖) = 𝑐 ෍

𝑖=𝑎

𝑏

𝑓(𝑖)

factoring out a 

constant
𝑇 𝑛 = 𝑐𝑛2 ෍

𝑖=0

log4 𝑛 −2
3

16

𝑖

+ 
5

3
𝑛log

4
3

෍

𝑖=0

𝑛−1

𝑥𝑖 =
𝑥𝑛 − 1

𝑥 − 1

finite geometric series

෍

𝑖=0

∞

𝑥𝑖 =
1

1 − 𝑥
 

infinite geometric 

series

when -1 < x < 1

If we’re trying to prove upper bound…

𝑇 𝑛 ≤ 𝑐𝑛2 ෍

𝑖=0

∞
3

16

𝑖

+ 4𝑛log
4
3

Closed form:

7. Simplify…



What about an upper bound on:

𝑇 𝑛 = 𝑐𝑛2

3
16

log4 𝑛−1

− 1

3
16

 − 1
+

5

3
𝑛log

4
3

𝑇 𝑛 = 𝑐𝑛2
1−

3

16

log4 𝑛−1

1−
3

16

+
5

3
𝑛log43 ≥ 𝑐𝑛2

1−
3

16

1−
3

16

+
5

3
𝑛log43

Which is ∈ Ω(𝑛2)



A Note About Base Cases

Except in very rare circumstances, your code looks like

if(n < constant)

 Do something

else

 Make recursive call(s) and do something.

(might have more base cases or edge cases, but core idea is this)

Do Something for n<constant is Θ 1 , even if do something 
doesn’t look constant 

(52 or 2100 are both constants, so 𝑛2 for 𝑛 = 5 is still Θ(1))

So changing constant 



But Don’t skip the base case

Sometimes there’s so many recursive calls (and so little non-recursive 
work) that most of the work happens at the base case

Try making the tree for 𝑇 𝑛 = ൝
3𝑇

𝑛

2
+ 1 if 𝑛 ≥ 2

1 otherwise

There’s 𝑛log _2(3) ≫ 𝑛 base case nodes, you need to account for that!

For Ex3, we let you choose your base case. Choose 𝑛 ≥ 2 or 𝑛 > 2 or 
𝑛 ≥ 1024 etc. whatever makes the math easier for you. But don’t just 
skip it or you might get the wrong result!



More Practice



Warm Up 

Write a recurrence to describe the running time of Mystery. 

If you have extra time, find the big-Θ running time.

Mystery(int[] arr){

 if(arr.length == 1)

  return arr[0];

 else if(arr.length == 2)

  return arr[0] + arr[1];

 //copies all but first two elements of arr.

 int[] smaller = Arrays.copyOfRange(arr, 2, arr.length); 

 return a[0] + a[1] + Mystery(smaller);

}
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Warm Up

𝑇 𝑛 =  ቐ
1 if 𝑛 = 1
2 if 𝑛 = 2

𝑇 𝑛 − 2 + 4 otherwise 
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Solving Recurrences I: Binary Search
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𝑇 𝑛 = 
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0.   Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify 



Solving Recurrences I: Binary Search
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𝑇 𝑛 = 
1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0.   Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify 

…

𝑛

𝑛/2

𝑛/22

1

1

1

1

1



Solving Recurrences I: Binary Search
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𝑇 𝑛 = 

1 𝑤ℎ𝑒𝑛 𝑛 ≤ 1

2𝑇
𝑛

2
+ 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑇

𝑛

2
+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Level Input Size Work/call Work/level

0 𝑛 1 1

1 𝑛/2 1 1

2 𝑛/22 1 1

𝑖 𝑛/2𝑖 1 1

log2𝑛 1 1 1

σ
𝑖=0
log2 𝑛−1

1 + 1 = log2(𝑛) + 1 

0.   Draw the tree.

1. What is the input size at level 𝑖?
2. What is the number of nodes at level 𝑖?
3. What is the work done at recursive level 𝑖?
4. What is the last level of the tree?

5. What is the work done at the base case?

6. Sum over all levels (using 3,5).

7. Simplify 



Extra Amortization Example
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A Contrived Example

A MakesYouWaitList operates as follows:

When you call find(), it does a linear search through an array of 𝑛 
elements to find 𝑖.If the index is odd, it spins for 𝑂(𝑛) time, if the index 
is even it spins for 𝑂(𝑛2) time. Additionally, every 𝑛th call to find it spins 
for 𝑂(𝑛2.5) time. It looks like this:
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class MakesYouWaitList{

 int callsToFind=0; Object arr[] 

find(Object o){

 n=arr.length

 int indexOfI=LinearSearch(o);

 if(indexOfI % 2 == 1)

  for(int k=0; k<n; k++) { }

 else 

  for(int k=0; k<n*n; k++) { }

 callsToFind++;

 if(callsToFind == n) {

  callsToFind = 0;

   for(int k=0; k<Math.pow(n,2.5); k++) { }

 }

}
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All the running times

Best Worst Average

Amortized 𝑂 𝑛1.5  Every 𝑛 operations 

trigger the last 𝑛2.5 spin 

time. No matter what 

elements are chosen. The 

best choices (all at even 

indices) will add 𝑛 work 

each, which is a lower order 

term.

𝑂(𝑛2) On an odd input we 

take 𝑂 𝑛2 . The O(𝑛1.5) we 

want to assign to each for the 

big spin-time at the end is a 

lower order term.

𝑂 𝑛2 On average, half the 

inputs will be at odd indices and 

half even, so we’ll have:
𝑛

2
𝑂 𝑛 +

𝑛

2
𝑂 𝑛2 + 𝑂 𝑛2.5  

work, which is 𝑂(𝑛3) total. 

Giving each of the 𝑛 operations 

its share we get 𝑂(𝑛2)

Unamortized 𝑂(𝑛) as long as the element 

is stored at an even index 

and doesn’t trigger the 

resize, we’ll get 𝑂(𝑛) time.

𝑂(𝑛2) The worst-case total 

work for 𝑛 operations is for all 

to be odd 𝑛 ⋅ 𝑂 𝑛2 , and one 

to trigger the resize 𝑂(𝑛2.5). 

The total is 𝑂(𝑛3), which we 

distribute equally among the 

𝑛 inserts.

𝑂(𝑛2) We have a 1/𝑛 chance of 

causing the 𝑂(𝑛2.5) spin, a ½ 

chance of getting 𝑂(𝑛) and ½ 

of 𝑂(𝑛2), this gives:
1

𝑛
⋅ 𝑂 𝑛2.5 +

1

2
𝑂 𝑛 +

1

2
𝑂(𝑛2)

Which gives 𝑂(𝑛2)
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