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Logistics 
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Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the 

element with the smallest priority, 

removes it from the collection.

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not 

remove the element with the 

smallest priority.

insert(value) – add a new 

element to the collection.

Uses:

• Operating System

• Well-designed printers

• Some Compression Schemes 

(google Huffman Codes)

• Sorting

• Graph algorithms
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Binary Heaps

A Binary Min-Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children
-In particular, the smallest element must be the root!

3. The tree is complete
-Every level of the tree is completely filled, except possibly the last level, 
which is filled from left to right.

-Thus, no Degenerate trees!

Called min-heap, because most important element has smallest priority. A 
max-heap follows the same principles but puts bigger elements on top.
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Are These Min-Heaps

5

Wrong shape!

5 has a smaller child.
Valid heap!

Valid heap!

5 is smaller than 10, but 10 isn’t an 

ancestor so not a violation.



Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree Θ(height) Θ(height)

Maybe we already know how to implement a priority queue. 
How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis. (amortized bounds will match).
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Implementing Heaps

Let’s start with removeMin.

Idea: take the bottom right-most node and use it to plug the hole

Shape is correct now

But that value might be to big. We need to “percolate it down”
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percolateDown(curr)

  while(curr.value > curr.left.value || curr.value > curr.right.value)

  swap curr with min of left and right

  endWhile

 



Implementing Heaps

Insertion

What is the shape going to be after the insertion? 

Again, plug the hole first. 

Might violate the heap property. Percolate it up
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percolateUp(curr)

  while(curr.value < curr.parent.value)

  swap curr and parent

  endWhile

 



An Optimization

Pointers are annoying.

They’re also slow. 

Shape is simple—we don’t need pointers

We can use an array instead.
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An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child:

My right child:

My parent:
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On Exercise 2, you’ll index 

from 0 rather than 1. 

Details are different!



An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child: 2𝑖

My right child: 2𝑖 + 1

My parent: 
𝑖

2
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On Exercise 2, you’ll index 

from 0 rather than 1. 

Details are different!



Running times?

Worst case: looks like 𝑂(ℎ) where ℎ is the height of the tree.

That’s true, but it’s not a good answer. To understand it, your user needs 
to understand how you’ve implemented your priority queue. They 
should only need to know how many things they put in. 

Let’s find a formula for ℎ in terms of 𝑛.
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Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?
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Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

On the whiteboard we derived that the number of nodes on level 𝑖 of a 
binary tree was 2𝑖.

Thus the total number of nodes in a perfect binary tree of height ℎ is 

σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1. 

So if we have 𝑛 nodes in a perfect tree, we can use the formula

𝑛 = 2ℎ+1 − 1 to conclude that ℎ = 𝑂(log 𝑛),so

 A perfect tree with 𝑛 nodes has height 𝑂(log 𝑛).

A similar argument can show the same statement for complete trees.
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More Operations

On Ex 2, you’ll do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap 
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the 
heap and a new, smaller priority, update that object’s priority.

Remove(element) Given a pointer to an element of the heap, remove 
that element.

Needing a pointer to the element is a bit unusual – it makes maintaining 
the data structure more complicated. 
-Heap doesn’t have BST property—it’s hard to find things in there!!
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Some Exercise 2 Notes

You know everything you need to do Exercise 2. Some minor differences from 
lecture:

You’ll implement both a min-heap and a max-heap.

Some of the method names are different
-Extract() instead of removeMin()

-One updatePriority() method instead of separate IncreaseKey(), DecreaseKey()

Index from 0 instead of 1. 

updatePriority() and some other methods, require pointers to the location in 
the heap. You’ll use a (given, java built-in) hashmap to do that. Be sure you’re 
keeping that map up-to-date!

Remember we omit edge cases in lecture sample code. 
-(e.g., what if percolateUp gets all the way to root?)

16



More Priority Queue Operations
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Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛 ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid. 

There are at least two distinct problems (bugs or gaps that need much 
more explanation), can you find them?
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Two Issues

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

It’s not clear that you can make each insert, one right after the other, hit 
the worst-case behavior.
-Imagine you said “when operating a [standard] Queue, inserting takes Θ(𝑛) time in 
the worst case. So 𝑛 consecutive inserts take Θ(𝑛2) time.” That’s false!

𝑛 changes as you do the insertions! 

19



Fixing the Bugs/Gaps

If you put 𝑂 in for Θ the proof would work as written. 
-Remember 𝑂 is an upper-bound. 

-“The worst thing right now ≤ the worst thing ever”

-𝑂 ℎ ≤ 𝑂(log 𝑛) where ℎ is current height, and 𝑛 is final height.

It’s not clear that you can make each insert, one right after the other, hit 
the worst-case behavior.
-You can force this with a heap! Inserting elements in decreasing order will mean 
every inserted element goes at the leaf location and needs to percolateUp to the 
root (since minimum needs to be at root).

The size isn’t 𝑛 the whole time.
-But big-𝑂 doesn’t care about constant factors. And half the time, it’s 𝑛/2 or more. 
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BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . (starting from the second half, ℎ is at least 

log
𝑛

2
= log 𝑛 − 1 ∈ Θ(log 𝑛)

So the number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .
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Fixed Proof (Sketch only)

Claim: Inserting 𝑛 times has a worst case running time of Θ(𝑛 log 𝑛)

Proof:

Each of the 𝑛 calls, has worst case O(log 𝑛). So it’s certainly O(𝑛 log 𝑛).

For an Omega bound, note that for most elements the height of the 
data structure is already close to the final height. Considering only the 
last 𝑛/2 operations, inserting elements in decreasing order will produce 

ℎ swaps, which gives 
𝑛

2
⋅ ℎ ≤

𝑛

2
(log 𝑛 − 1) ∈ Ω(𝑛 log 𝑛) swaps, and 

therefore that many steps.

Thus our running time is Θ(𝑛 log 𝑛).
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Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛 ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case. 

Can we do better?
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Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and we can make them all go all the 
way up. 

What if instead we tried to percolate things down?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.
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Is It Really Faster?

How long does it take to percolate everything down?

Each element at level 𝑖 will do ℎ − 𝑖 operations (up to some constant 
factor) 

Total operations?

σ𝑖=0
ℎ 2𝑖 ℎ − 𝑖 = σ

𝑖=0
log 𝑛 

2𝑖 log 𝑛 − 𝑖 = 

Θ(𝑛) 
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Floyd’s BuildHeap

Ok, it’s really faster. 
But can we make it work?

It’s not clear what order to call the percolateDown’s in.

Should we start at the top or bottom?
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Two Possibilities

void StartTop(){

 for(int i=0; i < n;i++){

  percolateDown(i)

 }

}

27

void StartBottom(){

 for(int i=n; i >= 0;i--){

  percolateDown(i)

 }

}

Try both of these on some 

trees. Is either of them 

possibly an ok algorithm?
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Only One Possiblity

If you run StartTop() on this heap, it will fail. 
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Only One Possiblity

If you run StartTop() on this heap, it will fail. 
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Only One Possibility

But StartBottom() seems to work. 

Does it always work?
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Let’s Prove It!

Well, let’s sketch the proof of it.
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Let’s Prove It!

Well, let’s sketch the proof of it.
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Heap  

(IH)

Heap  

(IH)

𝑥 𝑦

𝑧 Base Case: Leaf node is always a heap.

IH: Suppose 𝑥, 𝑦 are roots of heaps

IS: We percolateDown, when you 

percolateDown and the children are 

already heaps, the whole thing is a heap!



More Operations

Let’s do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap 
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the 
heap and a new, smaller priority, update that object’s priority.

Remove(element) Given a pointer to an element of the heap, remove 
that element.

BuildHeap(elements 𝑒1, … , 𝑒𝑛 ) – Given 𝑛 elements, create a heap 
containing exactly those 𝑛 elements. 
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Alternative Options

Binary heaps, implemented with an array are the default priorityQueue 
implementation (it’s the only one we discuss here).

There are alternatives, but unusual use cases.

𝑑-heaps, work like our heaps, but 𝑑 children, not 2 children.
-Shallower which can be helpful for very large heaps for cache reasons.

Leftist heaps, skew heaps, binomial queues (see Weiss 6.6-6.8)
-Trees, but not nice enough for the array implementation trick (i.e., really pointers)

-Useful mainly if you frequently need a merge operation (given two priority 
queues, create a combined priority queue).

-Fun for-your-own-thinking, how would you merge binary heaps? (it won’t be 
super fast, but think about how your strategy might change for different sizes)
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Amortization
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Amortization

How much does housing cost per day in Seattle?

Well, it depends on the day.

The day rent is due, it’s $1800.

The other days of the month it’s free. 
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Amortization

Amortization is an accounting analysis. It’s a way to reflect the fact that 
even though the “first of the month” is very expensive, the reason that 
it’s very expensive is that it’s taking on responsibility for all the other 
days.

If we distributed the cost equally across the days, (because all days 
should be equally responsible), we “amortize” the cost.
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Amortization

AMORTIZED

38

It costs $1800/month (which we 
pay once)

So the cost per day is 
1800

30
= 60.

Good answer if the question is 
“what does my daily pay need to 
be to afford housing?“

UNAMORTIZED

On the first it costs $1800.

Every other day of the month it 
costs $0

Good answer if the question is 
“how much do I need to keep in 
my bank account so it doesn’t get 
overdrawn?”



Amortization

What’s the worst case for enqueue into an array-based queue?

-The running time is 𝑂(𝑛) when we need to resize, and 𝑂(1) otherwise.

Is 𝑂(𝑛) a good description of the worst-case behavior? 
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Amortization

AMORTIZED

40

It takes 𝑂(𝑛) time to resize once, 
the next 𝑛 − 1 calls take 𝑂(1) 
time each.

So the cost per operation is 
𝑂 𝑛 +[𝑛−1]𝑂(1)

𝑛
= 𝑂(1)

Good answer if the question is 
“what will happen when I do 
many insertions in a row?“

UNAMORTIZED

The resize will take 𝑂(𝑛) time. 
That’s the worst thing that could 
happen.

Good answer if the question is 
“how long might one (unlucky) 
user need to wait on a single 
insertion?”



Amortization

The most common application of amortized bounds is for 
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑚 insertions?

We might need to double a bunch, but the total resizing work is at most 
𝑂(𝑚)

And the regular insertions are at most m ⋅ 𝑂 1 = 𝑂(𝑚)

So 𝑚 insertions take 𝑂(𝑚) work total

Or amortized 
𝑂(𝑚)

𝑚
= 𝑂(1) time. 
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Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily 
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work? 

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)



Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily 
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work? 

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)



Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖  a lot. Why does it converge?

…



Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖  a lot. Why does it converge?
…

Every term in the summation fills half of 

the gap and leaves half the gap 

(because it’s half as big).

but then the next term will fill only half 

the gap again (because it’s half as big).

Half the total is in the first term, half the 

remaining total is in the next, …



Amortization

Why do we double? Why not increase the size by 10,000 each time we 
fill up?

How much work is done on resizing to get the size up to 𝑚?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑚

10000 10000𝑖 ≈ 10,000 ⋅
𝑚2

10,0002 = 𝑂(𝑚2)

The other inserts do 𝑂 𝑚  work total. 

The amortized cost to insert is 𝑂
𝑚2

𝑚
= 𝑂(𝑚).

Much worse than the 𝑂(1) from doubling!
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Amortization vs. Average-Case

Amortization and “average/best/worst” case are independent properties 
(you can have un-amortized average-case, or amortized worst-case, or 
un-amortized worst-case, or …). 

Average case asks “if I selected a possible input on random, how long 
would my code take” (compare to worst-case: “if I select the worst 
value”)

Amortized or not is “do we care about how much our bank account 
changes on one day or over the entire month?” (do we care about the 
running time of individual calls or only what happens over a sequence 
of them?)
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Why use (or don’t use) amortized analysis?

The appropriate analysis depends on your situation (and often it’s worth 
knowing both).

A common use of data structures is as part of an algorithm.
-E.g., I’m trying to process everything in a data set, I insert everything into the data 
structure, remove them one at a time. 

-In that case, we almost always want amortized analysis (we care about when the 
full analysis is done, not when we go from 49% done to 50% done). 

But sometimes you care about individual calls
-Your data structure is feeding another process that the user is watching in real-
time. 



O, Omega, Theta vs. best/worst
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𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case 
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”

50



Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case 

Analysis

In the best-case, linear search 

will take at most as much time as 

binary search ever takes. That is, 

it’s 𝑂(log 𝑛) .

In the best case, linear search still 

has to look at array index 0; those 

operations still take time, so you 

will take at least Ω(1) time. 

In the best case, linear-

search is both 𝑂(1) and 

Ω 1  so it is Θ(1).

Worst-

Case 

Analysis

In the worst-case, binary search 

will take at most as much time as 

linear search ever takes. That is, 

it’s 𝑂(𝑛).

In the worst-case, linear search will 

check at least as many locations in 

the array as binary search does in 

the worst-case, so it will take at 

least Ω(log n) time

In the worst-case, binary 

search takes Θ(log 𝑛) time.

In the worst-case, linear 

search takes Θ(𝑛) time.
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Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case 

Analysis

In the best case, my algorithm is 

pretty good, it takes at most 

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this 

algorithm still takes a while; it 

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my 

algorithm takes exactly 

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case 

Analysis

Even in the worst-case my 

algorithm, isn’t that bad! It takes 

at most 𝑂(𝑡𝑖𝑚𝑒) time in the 

worst-case

In the worst-case, there’s still a lot 

of work the algorithm has to do; it 

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my 

algorithm takes exactly 

Θ(𝑡𝑖𝑚𝑒)
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Extra Amortization Example
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A Contrived Example

A MakesYouWaitList operates as follows:

When you call find(), it does a linear search through an array of 𝑛 
elements to find 𝑖.If the index is odd, it spins for 𝑂(𝑛) time, if the index 
is even it spins for 𝑂(𝑛2) time. Additionally, every 𝑛th call to find it spins 
for 𝑂(𝑛2.5) time. It looks like this:
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class MakesYouWaitList{

 int callsToFind=0; Object arr[] 

find(Object o){

 n=arr.length

 int indexOfI=LinearSearch(o);

 if(indexOfI % 2 == 1)

  for(int k=0; k<n; k++) { }

 else 

  for(int k=0; k<n*n; k++) { }

 callsToFind++;

 if(callsToFind == n) {

  callsToFind = 0;

   for(int k=0; k<Math.pow(n,2.5); k++) { }

 }

}
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All the running times

Best Worst Average

Amortized 𝑂 𝑛1.5  Every 𝑛 operations 

trigger the last 𝑛2.5 spin 

time. No matter what 

elements are chosen. The 

best choices (all at even 

indices) will add 𝑛 work 

each, which is a lower order 

term.

𝑂(𝑛2) On an odd input we 

take 𝑂 𝑛2 . The O(𝑛1.5) we 

want to assign to each for the 

big spin-time at the end is a 

lower order term.

𝑂 𝑛2 On average, half the 

inputs will be at odd indices and 

half even, so we’ll have:
𝑛

2
𝑂 𝑛 +

𝑛

2
𝑂 𝑛2 + 𝑂 𝑛2.5  

work, which is 𝑂(𝑛3) total. 

Giving each of the 𝑛 operations 

its share we get 𝑂(𝑛2)

Unamortized 𝑂(𝑛) as long as the element 

is stored at an even index 

and doesn’t trigger the 

resize, we’ll get 𝑂(𝑛) time.

𝑂(𝑛2) The worst-case total 

work for 𝑛 operations is for all 

to be odd 𝑛 ⋅ 𝑂 𝑛2 , and one 

to trigger the resize 𝑂(𝑛2.5). 

The total is 𝑂(𝑛3), which we 

distribute equally among the 

𝑛 inserts.

𝑂(𝑛2) We have a 1/𝑛 chance of 

causing the 𝑂(𝑛2.5) spin, a ½ 

chance of getting 𝑂(𝑛) and ½ 

of 𝑂(𝑛2), this gives:
1

𝑛
⋅ 𝑂 𝑛2.5 +

1

2
𝑂 𝑛 +

1

2
𝑂(𝑛2)

Which gives 𝑂(𝑛2)
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