
More Heaps CSE 332 Spring 2025

Lecture 5

1

Logistics

2

Monday Tuesday Wednesday Thursday Friday

This

Week

Exercise 0 due

Ex 2 available

TODAY Exercise 1 due

Ex 3 available

Next

Week

Ex 2 due Ex 3 due

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the

element with the smallest priority,

removes it from the collection.

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority.

insert(value) – add a new

element to the collection.

Uses:

• Operating System

• Well-designed printers

• Some Compression Schemes

(google Huffman Codes)

• Sorting

• Graph algorithms

3

Binary Heaps

A Binary Min-Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children
-In particular, the smallest element must be the root!

3. The tree is complete
-Every level of the tree is completely filled, except possibly the last level,
which is filled from left to right.

-Thus, no Degenerate trees!

Called min-heap, because most important element has smallest priority. A
max-heap follows the same principles but puts bigger elements on top.

4

Are These Min-Heaps

5

Wrong shape!

5 has a smaller child.
Valid heap!

Valid heap!

5 is smaller than 10, but 10 isn’t an

ancestor so not a violation.

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree Θ(height) Θ(height)

Maybe we already know how to implement a priority queue.
How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis. (amortized bounds will match).
6

Implementing Heaps

Let’s start with removeMin.

Idea: take the bottom right-most node and use it to plug the hole

Shape is correct now

But that value might be to big. We need to “percolate it down”

7

2

58

46

9

5

4

percolateDown(curr)

 while(curr.value > curr.left.value || curr.value > curr.right.value)

 swap curr with min of left and right

 endWhile

Implementing Heaps

Insertion

What is the shape going to be after the insertion?

Again, plug the hole first.

Might violate the heap property. Percolate it up

8

3

85

74

16 7

1

1

3

percolateUp(curr)

 while(curr.value < curr.parent.value)

 swap curr and parent

 endWhile

An Optimization

Pointers are annoying.

They’re also slow.

Shape is simple—we don’t need pointers

We can use an array instead.

9

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child:

My right child:

My parent:

10

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

On Exercise 2, you’ll index

from 0 rather than 1.

Details are different!

An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child: 2𝑖

My right child: 2𝑖 + 1

My parent:
𝑖

2

11

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

On Exercise 2, you’ll index

from 0 rather than 1.

Details are different!

Running times?

Worst case: looks like 𝑂(ℎ) where ℎ is the height of the tree.

That’s true, but it’s not a good answer. To understand it, your user needs
to understand how you’ve implemented your priority queue. They
should only need to know how many things they put in.

Let’s find a formula for ℎ in terms of 𝑛.

12

Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

13

Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

On the whiteboard we derived that the number of nodes on level 𝑖 of a
binary tree was 2𝑖.

Thus the total number of nodes in a perfect binary tree of height ℎ is

σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1.

So if we have 𝑛 nodes in a perfect tree, we can use the formula

𝑛 = 2ℎ+1 − 1 to conclude that ℎ = 𝑂(log 𝑛),so

 A perfect tree with 𝑛 nodes has height 𝑂(log 𝑛).

A similar argument can show the same statement for complete trees.

14

More Operations

On Ex 2, you’ll do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the
heap and a new, smaller priority, update that object’s priority.

Remove(element) Given a pointer to an element of the heap, remove
that element.

Needing a pointer to the element is a bit unusual – it makes maintaining
the data structure more complicated.
-Heap doesn’t have BST property—it’s hard to find things in there!!

15

Some Exercise 2 Notes

You know everything you need to do Exercise 2. Some minor differences from
lecture:

You’ll implement both a min-heap and a max-heap.

Some of the method names are different
-Extract() instead of removeMin()

-One updatePriority() method instead of separate IncreaseKey(), DecreaseKey()

Index from 0 instead of 1.

updatePriority() and some other methods, require pointers to the location in
the heap. You’ll use a (given, java built-in) hashmap to do that. Be sure you’re
keeping that map up-to-date!

Remember we omit edge cases in lecture sample code.
-(e.g., what if percolateUp gets all the way to root?)

16

More Priority Queue Operations

17

Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid.

There are at least two distinct problems (bugs or gaps that need much
more explanation), can you find them?

18

Two Issues

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

It’s not clear that you can make each insert, one right after the other, hit
the worst-case behavior.
-Imagine you said “when operating a [standard] Queue, inserting takes Θ(𝑛) time in
the worst case. So 𝑛 consecutive inserts take Θ(𝑛2) time.” That’s false!

𝑛 changes as you do the insertions!

19

Fixing the Bugs/Gaps

If you put 𝑂 in for Θ the proof would work as written.
-Remember 𝑂 is an upper-bound.

-“The worst thing right now ≤ the worst thing ever”

-𝑂 ℎ ≤ 𝑂(log 𝑛) where ℎ is current height, and 𝑛 is final height.

It’s not clear that you can make each insert, one right after the other, hit
the worst-case behavior.
-You can force this with a heap! Inserting elements in decreasing order will mean
every inserted element goes at the leaf location and needs to percolateUp to the
root (since minimum needs to be at root).

The size isn’t 𝑛 the whole time.
-But big-𝑂 doesn’t care about constant factors. And half the time, it’s 𝑛/2 or more.

20

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . (starting from the second half, ℎ is at least

log
𝑛

2
= log 𝑛 − 1 ∈ Θ(log 𝑛)

So the number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

21

Fixed Proof (Sketch only)

Claim: Inserting 𝑛 times has a worst case running time of Θ(𝑛 log 𝑛)

Proof:

Each of the 𝑛 calls, has worst case O(log 𝑛). So it’s certainly O(𝑛 log 𝑛).

For an Omega bound, note that for most elements the height of the
data structure is already close to the final height. Considering only the
last 𝑛/2 operations, inserting elements in decreasing order will produce

ℎ swaps, which gives
𝑛

2
⋅ ℎ ≤

𝑛

2
(log 𝑛 − 1) ∈ Ω(𝑛 log 𝑛) swaps, and

therefore that many steps.

Thus our running time is Θ(𝑛 log 𝑛).

22

Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.

Can we do better?

23

Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and we can make them all go all the
way up.

What if instead we tried to percolate things down?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.

24

Is It Really Faster?

How long does it take to percolate everything down?

Each element at level 𝑖 will do ℎ − 𝑖 operations (up to some constant
factor)

Total operations?

σ𝑖=0
ℎ 2𝑖 ℎ − 𝑖 = σ

𝑖=0
log 𝑛

2𝑖 log 𝑛 − 𝑖 =

Θ(𝑛)

25

Floyd’s BuildHeap

Ok, it’s really faster.
But can we make it work?

It’s not clear what order to call the percolateDown’s in.

Should we start at the top or bottom?

26

Two Possibilities

void StartTop(){

 for(int i=0; i < n;i++){

 percolateDown(i)

 }

}

27

void StartBottom(){

 for(int i=n; i >= 0;i--){

 percolateDown(i)

 }

}

Try both of these on some

trees. Is either of them

possibly an ok algorithm?

3

31

78

12 4

6

76

73

7

1

8

Only One Possiblity

If you run StartTop() on this heap, it will fail.

28

3

31

78

12 4

6

76

73

7

1

8

Only One Possiblity

If you run StartTop() on this heap, it will fail.

29

3

31

78

12 4

6

76

73

7

1

8

Only One Possibility

But StartBottom() seems to work.

Does it always work?

30

3

31

78

12 4

6

7

6

31

8

1

7

7

2

Let’s Prove It!

Well, let’s sketch the proof of it.

31

Heap

(IH)

Heap

(IH)

𝑥 𝑦

𝑧

Let’s Prove It!

Well, let’s sketch the proof of it.

32

Heap

(IH)

Heap

(IH)

𝑥 𝑦

𝑧 Base Case: Leaf node is always a heap.

IH: Suppose 𝑥, 𝑦 are roots of heaps

IS: We percolateDown, when you

percolateDown and the children are

already heaps, the whole thing is a heap!

More Operations

Let’s do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the
heap and a new, smaller priority, update that object’s priority.

Remove(element) Given a pointer to an element of the heap, remove
that element.

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

33

Alternative Options

Binary heaps, implemented with an array are the default priorityQueue
implementation (it’s the only one we discuss here).

There are alternatives, but unusual use cases.

𝑑-heaps, work like our heaps, but 𝑑 children, not 2 children.
-Shallower which can be helpful for very large heaps for cache reasons.

Leftist heaps, skew heaps, binomial queues (see Weiss 6.6-6.8)
-Trees, but not nice enough for the array implementation trick (i.e., really pointers)

-Useful mainly if you frequently need a merge operation (given two priority
queues, create a combined priority queue).

-Fun for-your-own-thinking, how would you merge binary heaps? (it won’t be
super fast, but think about how your strategy might change for different sizes)

34

Amortization

35

Amortization

How much does housing cost per day in Seattle?

Well, it depends on the day.

The day rent is due, it’s $1800.

The other days of the month it’s free.

36

Amortization

Amortization is an accounting analysis. It’s a way to reflect the fact that
even though the “first of the month” is very expensive, the reason that
it’s very expensive is that it’s taking on responsibility for all the other
days.

If we distributed the cost equally across the days, (because all days
should be equally responsible), we “amortize” the cost.

37

Amortization

AMORTIZED

38

It costs $1800/month (which we
pay once)

So the cost per day is
1800

30
= 60.

Good answer if the question is
“what does my daily pay need to
be to afford housing?“

UNAMORTIZED

On the first it costs $1800.

Every other day of the month it
costs $0

Good answer if the question is
“how much do I need to keep in
my bank account so it doesn’t get
overdrawn?”

Amortization

What’s the worst case for enqueue into an array-based queue?

-The running time is 𝑂(𝑛) when we need to resize, and 𝑂(1) otherwise.

Is 𝑂(𝑛) a good description of the worst-case behavior?

39

Amortization

AMORTIZED

40

It takes 𝑂(𝑛) time to resize once,
the next 𝑛 − 1 calls take 𝑂(1)
time each.

So the cost per operation is
𝑂 𝑛 +[𝑛−1]𝑂(1)

𝑛
= 𝑂(1)

Good answer if the question is
“what will happen when I do
many insertions in a row?“

UNAMORTIZED

The resize will take 𝑂(𝑛) time.
That’s the worst thing that could
happen.

Good answer if the question is
“how long might one (unlucky)
user need to wait on a single
insertion?”

Amortization

The most common application of amortized bounds is for
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑚 insertions?

We might need to double a bunch, but the total resizing work is at most
𝑂(𝑚)

And the regular insertions are at most m ⋅ 𝑂 1 = 𝑂(𝑚)

So 𝑚 insertions take 𝑂(𝑚) work total

Or amortized
𝑂(𝑚)

𝑚
= 𝑂(1) time.

41

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?

…

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?
…

Every term in the summation fills half of

the gap and leaves half the gap

(because it’s half as big).

but then the next term will fill only half

the gap again (because it’s half as big).

Half the total is in the first term, half the

remaining total is in the next, …

Amortization

Why do we double? Why not increase the size by 10,000 each time we
fill up?

How much work is done on resizing to get the size up to 𝑚?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑚

10000 10000𝑖 ≈ 10,000 ⋅
𝑚2

10,0002 = 𝑂(𝑚2)

The other inserts do 𝑂 𝑚 work total.

The amortized cost to insert is 𝑂
𝑚2

𝑚
= 𝑂(𝑚).

Much worse than the 𝑂(1) from doubling!

46

Amortization vs. Average-Case

Amortization and “average/best/worst” case are independent properties
(you can have un-amortized average-case, or amortized worst-case, or
un-amortized worst-case, or …).

Average case asks “if I selected a possible input on random, how long
would my code take” (compare to worst-case: “if I select the worst
value”)

Amortized or not is “do we care about how much our bank account
changes on one day or over the entire month?” (do we care about the
running time of individual calls or only what happens over a sequence
of them?)

47

Why use (or don’t use) amortized analysis?

The appropriate analysis depends on your situation (and often it’s worth
knowing both).

A common use of data structures is as part of an algorithm.
-E.g., I’m trying to process everything in a data set, I insert everything into the data
structure, remove them one at a time.

-In that case, we almost always want amortized analysis (we care about when the
full analysis is done, not when we go from 49% done to 50% done).

But sometimes you care about individual calls
-Your data structure is feeding another process that the user is watching in real-
time.

O, Omega, Theta vs. best/worst

49

𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”

50

Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best-case, linear search

will take at most as much time as

binary search ever takes. That is,

it’s 𝑂(log 𝑛) .

In the best case, linear search still

has to look at array index 0; those

operations still take time, so you

will take at least Ω(1) time.

In the best case, linear-

search is both 𝑂(1) and

Ω 1 so it is Θ(1).

Worst-

Case

Analysis

In the worst-case, binary search

will take at most as much time as

linear search ever takes. That is,

it’s 𝑂(𝑛).

In the worst-case, linear search will

check at least as many locations in

the array as binary search does in

the worst-case, so it will take at

least Ω(log n) time

In the worst-case, binary

search takes Θ(log 𝑛) time.

In the worst-case, linear

search takes Θ(𝑛) time.

51

Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best case, my algorithm is

pretty good, it takes at most

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this

algorithm still takes a while; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case

Analysis

Even in the worst-case my

algorithm, isn’t that bad! It takes

at most 𝑂(𝑡𝑖𝑚𝑒) time in the

worst-case

In the worst-case, there’s still a lot

of work the algorithm has to do; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

52

Extra Amortization Example

53

A Contrived Example

A MakesYouWaitList operates as follows:

When you call find(), it does a linear search through an array of 𝑛
elements to find 𝑖.If the index is odd, it spins for 𝑂(𝑛) time, if the index
is even it spins for 𝑂(𝑛2) time. Additionally, every 𝑛th call to find it spins
for 𝑂(𝑛2.5) time. It looks like this:

54

class MakesYouWaitList{

 int callsToFind=0; Object arr[]

find(Object o){

 n=arr.length

 int indexOfI=LinearSearch(o);

 if(indexOfI % 2 == 1)

 for(int k=0; k<n; k++) { }

 else

 for(int k=0; k<n*n; k++) { }

 callsToFind++;

 if(callsToFind == n) {

 callsToFind = 0;

 for(int k=0; k<Math.pow(n,2.5); k++) { }

 }

}
55

All the running times

Best Worst Average

Amortized 𝑂 𝑛1.5 Every 𝑛 operations

trigger the last 𝑛2.5 spin

time. No matter what

elements are chosen. The

best choices (all at even

indices) will add 𝑛 work

each, which is a lower order

term.

𝑂(𝑛2) On an odd input we

take 𝑂 𝑛2 . The O(𝑛1.5) we

want to assign to each for the

big spin-time at the end is a

lower order term.

𝑂 𝑛2 On average, half the

inputs will be at odd indices and

half even, so we’ll have:
𝑛

2
𝑂 𝑛 +

𝑛

2
𝑂 𝑛2 + 𝑂 𝑛2.5

work, which is 𝑂(𝑛3) total.

Giving each of the 𝑛 operations

its share we get 𝑂(𝑛2)

Unamortized 𝑂(𝑛) as long as the element

is stored at an even index

and doesn’t trigger the

resize, we’ll get 𝑂(𝑛) time.

𝑂(𝑛2) The worst-case total

work for 𝑛 operations is for all

to be odd 𝑛 ⋅ 𝑂 𝑛2 , and one

to trigger the resize 𝑂(𝑛2.5).

The total is 𝑂(𝑛3), which we

distribute equally among the

𝑛 inserts.

𝑂(𝑛2) We have a 1/𝑛 chance of

causing the 𝑂(𝑛2.5) spin, a ½

chance of getting 𝑂(𝑛) and ½

of 𝑂(𝑛2), this gives:
1

𝑛
⋅ 𝑂 𝑛2.5 +

1

2
𝑂 𝑛 +

1

2
𝑂(𝑛2)

Which gives 𝑂(𝑛2)

56

	Slide 1: More Heaps
	Slide 2: Logistics
	Slide 3: Priority Queue ADT
	Slide 4: Binary Heaps
	Slide 5: Are These Min-Heaps
	Slide 6: Implementing Priority Queues: Take I
	Slide 7: Implementing Heaps
	Slide 8: Implementing Heaps
	Slide 9: An Optimization
	Slide 10: An Optimization
	Slide 11: An Optimization
	Slide 12: Running times?
	Slide 13: Heights of Perfect Trees
	Slide 14: Heights of Perfect Trees
	Slide 15: More Operations
	Slide 16: Some Exercise 2 Notes
	Slide 17: More Priority Queue Operations
	Slide 18: Even More Operations
	Slide 19: Two Issues
	Slide 20: Fixing the Bugs/Gaps
	Slide 21: BuildHeap Running Time (again)
	Slide 22: Fixed Proof (Sketch only)
	Slide 23: Where Were We?
	Slide 24: Can We Do Better?
	Slide 25: Is It Really Faster?
	Slide 26: Floyd’s BuildHeap
	Slide 27: Two Possibilities
	Slide 28: Only One Possiblity
	Slide 29: Only One Possiblity
	Slide 30: Only One Possibility
	Slide 31: Let’s Prove It!
	Slide 32: Let’s Prove It!
	Slide 33: More Operations
	Slide 34: Alternative Options
	Slide 35: Amortization
	Slide 36: Amortization
	Slide 37: Amortization
	Slide 38: Amortization
	Slide 39: Amortization
	Slide 40: Amortization
	Slide 41: Amortization
	Slide 42: Total Resizing work
	Slide 43: Total Resizing work
	Slide 44: Summation Intuition
	Slide 45: Summation Intuition
	Slide 46: Amortization
	Slide 47: Amortization vs. Average-Case
	Slide 48: Why use (or don’t use) amortized analysis?
	Slide 49: O, Omega, Theta vs. best/worst
	Slide 50: cap O ,cap omega ,cap theta vs. Best, Worst, Average
	Slide 51: Some Example Sentences
	Slide 52: Why Might you use it?
	Slide 53: Extra Amortization Example
	Slide 54: A Contrived Example
	Slide 55
	Slide 56: All the running times

