
Priority Queues CSE 332 Spring 2025

Lecture 4

1

Logistics

Amortized Analysis slides from last lecture will be covered on Wed or
Fri. Want to make sure we get through heaps today so you can start on
Ex 2.

2

Monday Tuesday Wednesday Thursday Friday

This

Week

TODAY

Exercise 0 due

Ex 2 available

Exercise 1 due

Ex 3 available

Next

Week

Ex 2 due Ex 3 due

A new ADT: Priority Queues

3

A New ADT

Our previous worklists (stacks, queues, etc.) all choose the next element
based on the order they were inserted.

That’s not always a good idea.

Emergency rooms aren’t first-come-first-served.

Sometimes our objects come with a priority, that tells us what we need
to do next.

An ADT that can handle a line with priorities is a priority queue.

4

Priority Queue ADT

Min Priority Queue ADT

removeMin() – returns the

element with the smallest priority,

removes it from the collection.

state

behavior

Set of comparable values

- Ordered based on “priority”

peekMin() – find, but do not

remove the element with the

smallest priority.

insert(value) – add a new

element to the collection.

Uses:

• Operating System

• Well-designed printers

• Some Compression Schemes

(google Huffman Codes)

• Sorting

• Graph algorithms

5

Keys and Values

In most applications, you’ll have two things

A priority and an object with that priority
-On a printer, the priority of the file and the file itself

-At an ER, the priority of the patient, and the patient themselves

We’re going to ignore the object and only focus on the priority for the
slides (makes it easier to look at), don’t forget the other object when
you implement things though!
-On the slides, we’ll usually use ints for priorities

-All you need are comparable values (doubles are fine, as would be non-numbers
if they can be ordered)

-On Ex2, objects comparable interface on objects give priorities.

6

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array

Unsorted Linked List

Sorted Linked List

Sorted Circular Array

Binary Search Tree

Maybe we already know how to implement a priority queue.
How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis. (amortized bounds will match).
7

Review: Binary Search Trees

A BST is:

1. A binary tree

2. For each node, everything in its left subtree is smaller than it and
everything in its right subtree is larger than it.

8

Are These BSTs?

9

6

73

85

6

52

84

9

1

2

3

4

5

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree

Maybe we already know how to implement a priority queue.
How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis. (amortized bounds will match).
10

Implementing Priority Queues: Take I

Insert removeMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Linked List Θ(𝑛) Θ(1)

Sorted Circular Array Θ(𝑛) Θ(1)

Binary Search Tree Θ(height) Θ(height)

Maybe we already know how to implement a priority queue.
How long would insert and removeMin take with these data structures?

For Array implementations, assume that the array is not yet full.

Other than this assumption, do worst case analysis. (amortized bounds will match).
11

Implementing Priority Queues: Take II

BSTs have really bad behavior in the worst case, but is it actually a
common problem?

Worst case, both of those operations are Θ(𝑛).

But often BSTs have height log(𝑛)

Can we somehow get that behavior in the worst case for priority
queues?

12

BST Properties

A BST is:

1. A binary tree

2. For each node, everything in its left subtree is smaller than it and
everything in its right subtree is larger than it.

Point 2 is what causes the really bad behavior in the worst case.

We probably don’t want exactly that requirement for implementing a
priority queue.

Maybe we can explicitly enforce that we don’t get a degenerate tree.

13

Binary Heaps

A Binary Min-Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children
-In particular, the smallest element must be the root!

3. The tree is complete
-Every level of the tree is completely filled, except possibly the last level,
which is filled from left to right.

-Thus, no Degenerate trees!

Called min-heap, because most important element has smallest priority. A
max-heap follows the same principles but puts bigger elements on top.

14

Tree Words

Height – the number of edges on the longest path from the root to a leaf.

15

1

2

3

4

5

Height 4

2

46 5

4
Height 1

Tree Words

Complete – every row is completely filled, except possibly the last row,
which is filled from left to right.

Perfect – every row is completely filled

16

2

58

46

9

5

4 2

58

46 5

4 2

58

46

9

5

4

2

Complete, but not perfect Neither Both Perfect and Complete

Binary Heaps

A Binary Min-Heap is

1. A Binary Tree

2. Every node is less than or equal to all of its children

-In particular, the smallest element must be the root!

3. The tree is complete

-Every level of the tree is completely filled, except possibly the last level,
which is filled from left to right.

-Thus, no degenerate trees!

17

Are These Min-Heaps

18

Are These Min-Heaps

19

Wrong shape!

5 has a smaller child.
Valid heap!

Valid heap!

5 is smaller than 10, but 10 isn’t an

ancestor so not a violation.

Implementing Heaps

Let’s start with removeMin.

Idea: take the bottom right-most node and use it to plug the hole

Shape is correct now

But that value might be to big. We need to “percolate it down”

20

2

58

46

9

5

4

Implementing Heaps

Let’s start with removeMin.

Idea: take the bottom right-most node and use it to plug the hole

Shape is correct now

But that value might be to big. We need to “percolate it down”

21

2

58

46

9

5

4

percolateDown(curr)

 while(curr.value > curr.left.value or curr.value > curr.right.value)

 swap curr with min of left and right

 endWhile

Implementing Heaps

Insertion

What is the shape going to be after the insertion?

Again, plug the hole first.

Might violate the heap property. Percolate it up

22

3

85

74

16 7

1

1

3

Implementing Heaps

Insertion

What is the shape going to be after the insertion?

Again, plug the hole first.

Might violate the heap property. Percolate it up

23

3

85

74

16 7

1

1

3

percolateUp(curr)

 while(curr.value < curr.parent.value)

 swap curr and parent

 endWhile

Summary

1. When adding/removing items, “plug the hole” to maintain the shape
property (or add at end if no hole).

2. Whatever was moved might be in the wrong spot. percolateUp or
percolateDown as appropriate
-i.e. move one step in the right direction via a swap.

24

An Optimization

Pointers are annoying.

They’re also slow.

Shape is simple—we don’t need pointers

We can use an array instead.

25

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child:

My right child:

My parent:

26

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

On Exercise 2, you’ll index

from 0 rather than 1.

Details are different!

An Optimization

If I’m at index 𝑖, what is the index of:

My left child, right child and parent?

My left child: 2𝑖

My right child: 2𝑖 + 1

My parent:
𝑖

2

27

1

85

34

76

1 4 3 5 6 8 7

0 1 2 3 4 5 6 7 8 9 10

On Exercise 2, you’ll index

from 0 rather than 1.

Details are different!

Running times?

Worst case: looks like 𝑂(ℎ) where ℎ is the height of the tree.

That’s true, but it’s not a good answer. To understand it, your user needs
to understand how you’ve implemented your priority queue. They
should only need to know how many things they put in.

Let’s find a formula for ℎ in terms of 𝑛.

28

Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

29

Heights of Perfect Trees

How many nodes are there in level 𝑖 of a perfect binary tree?

On the whiteboard we derived that the number of nodes on level 𝑖 of a
binary tree was 2𝑖.

Thus the total number of nodes in a perfect binary tree of height ℎ is

σ𝑖=0
ℎ 2𝑖 = 2ℎ+1 − 1.

So if we have 𝑛 nodes in a perfect tree, we can use the formula

𝑛 = 2ℎ+1 − 1 to conclude that ℎ = 𝑂(log 𝑛),so

 A perfect tree with 𝑛 nodes has height 𝑂(log 𝑛).

A similar argument can show the same statement for complete trees.

30

More Operations

On Ex 2, you’ll do more things with heaps!

IncreaseKey(element,priority) Given a pointer to an element of the heap
and a new, larger priority, update that object’s priority.

DecreaseKey(element,priority) Given a pointer to an element of the
heap and a new, smaller priority, update that object’s priority.

Remove(element) Given a pointer to an element of the heap, remove
that element.

Needing a pointer to the element is a bit unusual – it makes maintaining
the data structure more complicated.
-Heap doesn’t have BST property—it’s hard to find things in there!!

31

Some Exercise 2 Notes

You know everything you need to do Exercise 2. Some minor differences from
lecture:

You’ll implement both a min-heap and a max-heap.

Some of the method names are different
-Extract() instead of removeMin()

-One updatePriority() instead of separate IncreaseKey(), DecreaseKey()

Index from 0 instead of 1.

updatePriority() and some other methods, require pointers to the location in
the heap. You’ll use a (given, java built-in) hashmap to do that. Be sure you’re
keeping that map up-to-date!

Remember we omit edge cases in lecture sample code.
-(e.g., what if percolateUp gets all the way to root?)

32

More Priority Queue Operations

33

Even More Operations

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

That proof isn’t valid.

There are at least two distinct problems (bugs or gaps that need much
more explanation), can you find them?

34

Two Issues

Try 1: Just call insert 𝑛 times.

Worst case running time?

𝑛 calls, each worst case Θ(log 𝑛). So it’s Θ(𝑛 log 𝑛) right?

It’s not clear that you can make each insert, one right after the other, hit
the worst-case behavior.
-Imagine you said “when operating a [standard] Queue, inserting takes Θ(𝑛) time in
the worst case. So 𝑛 consecutive inserts take Θ(𝑛2) time.” That’s false!

𝑛 changes as you do the insertions!

35

Fixing the Bugs/Gaps

If you put 𝑂 in for Θ the proof would work as written.
-Remember 𝑂 is an upper-bound.

-“The worst thing right now ≤ the worst thing ever”

-𝑂 ℎ ≤ 𝑂(log 𝑛) where ℎ is current height, and 𝑛 is final height.

It’s not clear that you can make each insert, one right after the other, hit
the worst-case behavior.
-You can force this with a heap! Inserting elements in decreasing order will mean
every inserted element goes at the leaf location and needs to percolateUp to the
root (since minimum needs to be at root).

The size isn’t 𝑛 the whole time.
-But big-𝑂 doesn’t care about constant factors. And half the time, it’s 𝑛/2 or more.

36

BuildHeap Running Time (again)

Let’s try once more.

Saying the worst case was decreasing order was a good start.

What are the actual running times?

It’s Θ(ℎ), where ℎ is the current height.

But most nodes are inserted in the last two levels of the tree.
-For most nodes, ℎ is Θ log 𝑛 . (starting from the second half, ℎ is at least

log
𝑛

2
= log 𝑛 − 1 ∈ Θ(log 𝑛)

So the number of operations is at least
𝑛

2
⋅ Ω(log 𝑛) = Ω 𝑛 log 𝑛 .

37

Fixed Proof (Sketch only)

Claim: Inserting 𝑛 times has a worst case running time of Θ(𝑛 log 𝑛)

Proof:

Each of the 𝑛 calls, has worst case O(log 𝑛). So it’s certainly O(𝑛 log 𝑛).

For an Omega bound, note that for most elements the height of the
data structure is already close to the final height. Considering only the
last 𝑛/2 operations, inserting elements in decreasing order will produce

ℎ swaps, which gives
𝑛

2
⋅ ℎ ≤

𝑛

2
(log 𝑛 − 1) ∈ Ω(𝑛 log 𝑛) swaps, and

therefore that many steps.

Thus our running time is Θ(𝑛 log 𝑛).

38

Where Were We?

We were trying to design an algorithm for:

BuildHeap(elements 𝑒1, … , 𝑒𝑛) – Given 𝑛 elements, create a heap
containing exactly those 𝑛 elements.

Just inserting leads to a Θ(𝑛 log 𝑛) algorithm in the worst case.

Can we do better?

39

Can We Do Better?

What’s causing the 𝑛 insert strategy to take so long?

Most nodes are near the bottom, and we can make them all go all the
way up.

What if instead we tried to percolate things down?

Seems like it might be faster
-The bottom two levels of the tree have Ω(𝑛) nodes, the top two have 3 nodes.

40

	Slide 1: Priority Queues
	Slide 2: Logistics
	Slide 3: A new ADT: Priority Queues
	Slide 4: A New ADT
	Slide 5: Priority Queue ADT
	Slide 6: Keys and Values
	Slide 7: Implementing Priority Queues: Take I
	Slide 8: Review: Binary Search Trees
	Slide 9: Are These BSTs?
	Slide 10: Implementing Priority Queues: Take I
	Slide 11: Implementing Priority Queues: Take I
	Slide 12: Implementing Priority Queues: Take II
	Slide 13: BST Properties
	Slide 14: Binary Heaps
	Slide 15: Tree Words
	Slide 16: Tree Words
	Slide 17: Binary Heaps
	Slide 18: Are These Min-Heaps
	Slide 19: Are These Min-Heaps
	Slide 20: Implementing Heaps
	Slide 21: Implementing Heaps
	Slide 22: Implementing Heaps
	Slide 23: Implementing Heaps
	Slide 24: Summary
	Slide 25: An Optimization
	Slide 26: An Optimization
	Slide 27: An Optimization
	Slide 28: Running times?
	Slide 29: Heights of Perfect Trees
	Slide 30: Heights of Perfect Trees
	Slide 31: More Operations
	Slide 32: Some Exercise 2 Notes
	Slide 33: More Priority Queue Operations
	Slide 34: Even More Operations
	Slide 35: Two Issues
	Slide 36: Fixing the Bugs/Gaps
	Slide 37: BuildHeap Running Time (again)
	Slide 38: Fixed Proof (Sketch only)
	Slide 39: Where Were We?
	Slide 40: Can We Do Better?

