
More Asymptotics CSE 332 25Sp

Lecture 3

Announcements

Monday Tuesday Wednesday Thursday Friday

This

Week

TODAY

Ex 1 Available

Next

Week

Exercise 0 due

Ex 2 available

Exercise 1 due

You’ll have everything you need for Exercise 1 on today’s slides.

Asymptotic Notation

That’s a nice formula. But does everything in it matter?

Multiplying by constant factors doesn’t matter – let’s just ignore them.

Lower order terms don’t matter – delete them.

Gives us a “simplified big-O”

10𝑛 log 𝑛 + 3𝑛

5𝑛2 log 𝑛 + 13𝑛3

20𝑛 log log 𝑛 + 2 𝑛 log 𝑛

23𝑛

3

𝑂(𝑛 log 𝑛)

𝑂 𝑛3

𝑂(𝑛 log 𝑛)

𝑂(8𝑛)

Formally Big-O

We wanted to find an upper bound on our algorithm’s running time,
but

-We don’t want to care about constant factors.

-We only care about what happens as 𝑛 gets large.

The formal, mathematical definition is Big-O.

4

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-𝑶

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛).

Why is that the definition?

Why 𝑛0?

5

Why 𝑐?

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-𝑶

Why Are We Doing This?

You already intuitively understand what big-O means.

Who needs a formal definition anyway?

-We will.

Your intuitive definition and my intuitive definition might be different.

We’re going to be making more subtle big-O statements in this class.
-We need a mathematical definition to be sure we’re on the same page.

Once we have a mathematical definition, we can go back to intuitive
thinking.
-But when a weird edge case, or subtle statement appears, we can figure out what’s
correct.

6

Edge Cases

True or False: 10𝑛2 + 15𝑛 is 𝑂(𝑛3)

[this is an edge case]

It’s true! – it fits the definition.

Big-O is just an upper bound. It doesn’t have to be a good upper
bound.

If we want the best upper bound, we’ll ask you for a tight big-O bound.

𝑂 𝑛2 is the tight bound for this example.

It is (usually) technically correct to say your code runs in time 𝑂(𝑛𝑛!).

-DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

7

O, Omega, Theta [oh my?]

Big-O is an upper bound
-My code uses at most this many resources (e.g. runs in at most this much time)

Big-Omega is a lower bound

Big Theta is “equal to”

8

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

9

O(𝑔 𝑛) is the set of all functions 𝑓 𝑛 such

that there exist positive constants 𝑐, 𝑛0 such

that for all 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O (alternative definition)

For that reason, some people write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 where we wrote

“𝑓 𝑛 is 𝑂(𝑔 𝑛)”.

Other people write “𝑓 𝑛 = 𝑂 𝑔 𝑛 ” to mean the same thing.

We never write 𝑂(5𝑛) instead of 𝑂(𝑛) – they’re the same thing!

 It’s like writing
6

2
 instead of 3. It just looks weird.

Useful Vocab

The most common running times all have fancy names:

𝑂(1) constant

𝑂(log 𝑛) logarithmic

𝑂 𝑛 linear

𝑂(𝑛 log 𝑛) “n log n”

𝑂 𝑛2 quadratic

𝑂(𝑛3) cubic

𝑂(𝑛𝑐) polynomial (where c is a constant)

𝑂(𝑐𝑛) exponential (where c is a constant)

10

What’s the base of the log?

If I write log 𝑛, without specifying a base, I mean log2 𝑛 .

But does it matter for big-O?

Suppose we found an algorithm with running time log5 𝑛 instead.

Is that different from 𝑂 log2 𝑛 ?

No!

log𝑐 𝑛 =
log2 𝑛

log2 𝑐
 If 𝑐 is a constant, then log2 𝑐 is just a constant, and we can

hide it inside the 𝑂().

11

𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”

12

Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best-case, linear search

will take at most as much time as

binary search ever takes. That is,

it’s 𝑂(log 𝑛) .

In the best case, linear search still

has to look at array index 0; those

operations still take time, so you

will take at least Ω(1) time.

In the best case, linear-

search is both 𝑂(1) and

Ω 1 so it is Θ(1).

Worst-

Case

Analysis

In the worst-case, binary search

will take at most as much time as

linear search ever takes. That is,

it’s 𝑂(𝑛).

In the worst-case, linear search will

check at least as many locations in

the array as binary search does in

the worst-case, so it will take at

least Ω(log n) time

In the worst-case, binary

search takes Θ(log 𝑛) time.

In the worst-case, linear

search takes Θ(𝑛) time.

13

Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best case, my algorithm is

pretty good, it takes at most

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this

algorithm still takes a while; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case

Analysis

Even in the worst-case my

algorithm, isn’t that bad! It takes

at most 𝑂(𝑡𝑖𝑚𝑒) time in the

worst-case

In the worst-case, there’s still a lot

of work the algorithm has to do; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

14

Some Log Review

15

Logs

log 𝑛𝑘 = 𝑘 ⋅ log(𝑛).

log 2𝑛 = 𝑛 (logs and exponents are inverse functions.

log(log 𝑥) is usually written log log x

Grows VERY slowly (as slowly as 2(2𝑥) grows quickly)

log2(log2(# atoms in universe)) = log2(log2(1080)) = log2(80 ⋅ log2(10)) ≈ 8.054

Don’t confuse with log 𝑥 ⋅ log 𝑥 usually written log2(𝑥).

log log 𝑥 << log 𝑥 << log2(𝑥) (where << is “asymptotically less than”)

16

Writing Big-O Proofs

17

Proving Big-O, Formally

Big-O is an ∃𝑐, 𝑛0∀𝑛 statement.

I.e., an exists statement with a “forall” inside.

How do you prove an exists statement?

How do you prove a for-all statement?

18

Proving Big-O, Formally

Big-O is an ∃𝑐, 𝑛0∀𝑛 statement.

I.e., an exists statement with a “forall” inside.

How do you prove an exists statement?

Show the 𝑐, 𝑛0 that will work. Give specific values.

How do you prove a for-all statement?

Introduce an arbitrary 𝑛.

19

Using the Definition

Let’s show: 10𝑛2 + 15𝑛 is 𝑂(𝑛2)

20

Using the Definition

Let’s show: 10𝑛2 + 15𝑛 is 𝑂(𝑛2)

21

Scratch work:

10𝑛2 ≤ 10𝑛2

15𝑛 ≤ 15𝑛2 for 𝑛 ≥ 1
10𝑛2 + 15𝑛 ≤ 25𝑛2 for 𝑛 ≥ 1

Proof:

Take 𝑐 = 25 and 𝑛0 = 1. For an arbitrary 𝑛 ≥ 𝑛0, we have

The inequality 10𝑛2 ≤ 10𝑛2 is always true. The inequality 15𝑛 ≤ 15𝑛2 is true for 𝑛 ≥ 1,

as the right hand side is a factor of 𝑛 more than the right hand side.

As long as both inequalities are true we can add them, thus

10𝑛2 + 15𝑛 ≤ 25𝑛2 holds as long as 𝑛 ≥ 1.

This is exactly the inequality we needed to show.

Writing Proofs

Where did that c = 25, 𝑛0 = 1 come from?

That was some “scratch work” – the insight isn’t explained in the final proof

-You just say “Consider”

Don’t try to skip the scratch work when drafting your big-O proofs.

-But it won’t appear in your final version.

Be sure you’re arguing in correct logical order---you only assert something is
true when you know it. Often that’s the reverse of the scratch work order.

Don’t just choose 𝑐 = 1010, 𝑛0 = 105. That will be technically correct, but
proofs are acts of communication; that won’t convince your reader if they
didn’t already believe the claim; smaller values with algebra are more
convincing than overkill.

22

Amortization

23

Amortization

How much does housing cost per day in Seattle?

Well, it depends on the day.

The day rent is due, it’s $1800.

The other days of the month it’s free.

24

Amortization

Amortization is an accounting analysis. It’s a way to reflect the fact that
even though the “first of the month” is very expensive, the reason that
it’s very expensive is that it’s taking on responsibility for all the other
days.

If we distributed the cost equally across the days, (because all days
should be equally responsible), we “amortize” the cost.

25

Amortization

AMORTIZED

26

It costs $1800/month (which we
pay once)

So the cost per day is
1800

30
= 60.

Good answer if the question is
“what does my daily pay need to
be to afford housing?“

UNAMORTIZED

On the first it costs $1800.

Every other day of the month it
costs $0

Good answer if the question is
“how much do I need to keep in
my bank account so it doesn’t get
overdrawn?”

Amortization

What’s the worst case for enqueue into an array-based queue?

-The running time is 𝑂(𝑛) when we need to resize, and 𝑂(1) otherwise.

Is 𝑂(𝑛) a good description of the worst-case behavior?

27

Amortization

AMORTIZED

28

It takes 𝑂(𝑛) time to resize once,
the next 𝑛 − 1 calls take 𝑂(1)
time each.

So the cost per operation is
𝑂 𝑛 +[𝑛−1]𝑂(1)

𝑛
= 𝑂(1)

Good answer if the question is
“what will happen when I do
many insertions in a row?“

UNAMORTIZED

The resize will take 𝑂(𝑛) time.
That’s the worst thing that could
happen.

Good answer if the question is
“how long might one (unlucky)
user need to wait on a single
insertion?”

Amortization

The most common application of amortized bounds is for
insertions/deletions and data structure resizing.

Let’s see why we always do that doubling strategy.

How long in total does it take to do 𝑚 insertions?

We might need to double a bunch, but the total resizing work is at most
𝑂(𝑚)

And the regular insertions are at most m ⋅ 𝑂 1 = 𝑂(𝑚)

So 𝑚 insertions take 𝑂(𝑚) work total

Or amortized
𝑂(𝑚)

𝑚
= 𝑂(1) time.

29

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Total Resizing work

For 𝑚 insertions, the biggest the array could be is 2𝑚 (if 𝑚 is arbitrarily
large). So resizing will make arrays of size

2𝑚, 𝑚,
𝑚

2
,

𝑚

4
, … down to whatever the starting point was.

Work is 𝑐2𝑚 + 𝑐𝑚 +
𝑐𝑚

2
+

𝑐𝑚

4
+ ⋯ down to 𝑐 ⋅(starting size)

Total work?

σ
𝑖=0
log(𝑚)

𝑐 ⋅
2𝑚

2𝑖 = 2𝑚𝑐 ⋅ σ
𝑖=0
log(𝑚)

2−𝑖 ≤ 2𝑚𝑐 ⋅ σ𝑖=0
∞ 2−𝑖 = 4𝑚𝑐 = 𝑂(𝑚)

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?

…

Summation Intuition

We’ll see the summation σ𝑖=0
max constant

2𝑖 a lot. Why does it converge?
…

Every term in the summation fills half of

the gap and leaves half the gap

(because it’s half as big).

but then the next term will fill only half

the gap again (because it’s half as big).

Half the total is in the first term, half the

remaining total is in the next, …

Amortization

Why do we double? Why not increase the size by 10,000 each time we
fill up?

How much work is done on resizing to get the size up to 𝑚?

Will need to do work on order of current size every 10,000 inserts

σ
𝑖=0

𝑚

10000 10000𝑖 ≈ 10,000 ⋅
𝑚2

10,0002 = 𝑂(𝑚2)

The other inserts do 𝑂 𝑚 work total.

The amortized cost to insert is 𝑂
𝑚2

𝑚
= 𝑂(𝑚).

Much worse than the 𝑂(1) from doubling!

34

Amortization vs. Average-Case

Amortization and “average/best/worst” case are independent properties
(you can have un-amortized average-case, or amortized worst-case, or
un-amortized worst-case, or …).

Average case asks “if I selected a possible input on random, how long
would my code take” (compare to worst-case: “if I select the worst
value”)

Amortized or not is “do we care about how much our bank account
changes on one day or over the entire month?” (do we care about the
running time of individual calls or only what happens over a sequence
of them?)

35

Why use (or don’t use) amortized analysis?

The appropriate analysis depends on your situation (and often it’s worth
knowing both).

A common use of data structures is as part of an algorithm.
-E.g., I’m trying to process everything in a data set, I insert everything into the data
structure, remove them one at a time.

-In that case, we almost always want amortized analysis (we care about when the
full analysis is done, not when we go from 49% done to 50% done).

But sometimes you care about individual calls
-Your data structure is feeding another process that the user is watching in real-
time.

A Contrived Example

A MakesYouWaitList operates as follows:

When you call find(), it does a linear search through an array of 𝑛
elements to find 𝑖.If the index is odd, it spins for 𝑂(𝑛) time, if the index
is even it spins for 𝑂(𝑛2) time. Additionally, every 𝑛th call to find it spins
for 𝑂(𝑛2.5) time. It looks like this:

37

class MakesYouWaitList{

 int callsToFind=0; Object arr[]

find(Object o){

 n=arr.length

 int indexOfI=LinearSearch(o);

 if(indexOfI % 2 == 1)

 for(int k=0; k<n; k++) { }

 else

 for(int k=0; k<n*n; k++) { }

 callsToFind++;

 if(callsToFind == n) {

 callsToFind = 0;

 for(int k=0; k<Math.pow(n,2.5); k++) { }

 }

}
38

All the running times

Best Worst Average

Amortized 𝑂 𝑛1.5 Every 𝑛 operations

trigger the last 𝑛2.5 spin

time. No matter what

elements are chosen. The

best choices (all at even

indices) will add 𝑛 work

each, which is a lower order

term.

𝑂(𝑛2) On an odd input we

take 𝑂 𝑛2 . The O(𝑛1.5) we

want to assign to each for the

big spin-time at the end is a

lower order term.

𝑂 𝑛2 On average, half the

inputs will be at odd indices and

half even, so we’ll have:
𝑛

2
𝑂 𝑛 +

𝑛

2
𝑂 𝑛2 + 𝑂 𝑛2.5

work, which is 𝑂(𝑛3) total.

Giving each of the 𝑛 operations

its share we get 𝑂(𝑛2)

Unamortized 𝑂(𝑛) as long as the element

is stored at an even index

and doesn’t trigger the

resize, we’ll get 𝑂(𝑛) time.

𝑂(𝑛2) The worst-case total

work for 𝑛 operations is for all

to be odd 𝑛 ⋅ 𝑂 𝑛2 , and one

to trigger the resize 𝑂(𝑛2.5).

The total is 𝑂(𝑛3), which we

distribute equally among the

𝑛 inserts.

𝑂(𝑛2) We have a 1/𝑛 chance of

causing the 𝑂(𝑛2.5) spin, a ½

chance of getting 𝑂(𝑛) and ½

of 𝑂(𝑛2), this gives:
1

𝑛
⋅ 𝑂 𝑛2.5 +

1

2
𝑂 𝑛 +

1

2
𝑂(𝑛2)

Which gives 𝑂(𝑛2)

39

More big-O examples

Rearranging Inequalities

Is n2 + 10n ∈ 𝑂(𝑛3)

Can also rearrange a single inequality

Scratch work: (not part of proof)

𝑛2 + 10𝑛 ≤? 𝑛3

Iff 𝑛 + 10 ≤? 𝑛2

Iff 10 ≤? 𝑛2 −𝑛 set ? = 1, to make factoring easier

Iff 10 ≤ 𝑛(𝑛 − 1) which is definitely true for 𝑛 at least 5. So take 𝑛0 = 5

That’s our scratch work, now what’s our proof?

Rearranging Inequalities

Claim: n2 + 10n ∈ 𝑂(𝑛3)

Proof: Take 𝑐 = 1 and 𝑛0 = 5. Observe that for all 𝑛 ≥ 𝑛0, we have

10 ≤ 𝑛(𝑛 − 1) (as the right-hand-side is increasing with 𝑛)

Multiplying by 𝑛, we get 10𝑛 ≤ 𝑛3 − 𝑛2

Rearranging, we have 10𝑛 + 𝑛2 ≤ 𝑛3

As this inequality holds for all 𝑛 ≥ 𝑛0, we have met the definition as
required.

String of Inequalities

Can also string together inequalities (all facing the same direction)

Claim: log5 𝑛 + 10 ∈ 𝑂(log5(𝑛)).

Proof: We claim that 𝑐 = 3 and 𝑛0 = 5 suffice.

Observe for arbitrary 𝑛 ≥ 𝑛0:

log5 𝑛 + 10 ≤ log5 𝑛 + 10𝑛 ≤ log5 11 + log5(𝑛) ≤ 2 + log5(𝑛)

 ≤ 2 log5 𝑛 + log5(𝑛) for 𝑛 ≥ 5 (log5(𝑛) is increasing, log5 𝑛 = 1)

 ≤ 3 log5(𝑛)

This string of inequalities holds for all 𝑛 ≥ 5, meeting the definition of
big-O.

	Slide 1: More Asymptotics
	Slide 2: Announcements
	Slide 3: Asymptotic Notation
	Slide 4: Formally Big-O
	Slide 5: Why is that the definition?
	Slide 6: Why Are We Doing This?
	Slide 7: Edge Cases
	Slide 8: O, Omega, Theta [oh my?]
	Slide 9: Viewing O as a class
	Slide 10: Useful Vocab
	Slide 11: What’s the base of the log?
	Slide 12: cap O ,cap omega ,cap theta vs. Best, Worst, Average
	Slide 13: Some Example Sentences
	Slide 14: Why Might you use it?
	Slide 15: Some Log Review
	Slide 16: Logs
	Slide 17: Writing Big-O Proofs
	Slide 18: Proving Big-O, Formally
	Slide 19: Proving Big-O, Formally
	Slide 20: Using the Definition
	Slide 21: Using the Definition
	Slide 22: Writing Proofs
	Slide 23: Amortization
	Slide 24: Amortization
	Slide 25: Amortization
	Slide 26: Amortization
	Slide 27: Amortization
	Slide 28: Amortization
	Slide 29: Amortization
	Slide 30: Total Resizing work
	Slide 31: Total Resizing work
	Slide 32: Summation Intuition
	Slide 33: Summation Intuition
	Slide 34: Amortization
	Slide 35: Amortization vs. Average-Case
	Slide 36: Why use (or don’t use) amortized analysis?
	Slide 37: A Contrived Example
	Slide 38
	Slide 39: All the running times
	Slide 40: More big-O examples
	Slide 41: Rearranging Inequalities
	Slide 42: Rearranging Inequalities
	Slide 43: String of Inequalities

