
Algorithm Analysis CSE 332 Spring 2025

Lecture 2

1

Announcements

Office Hours have started! You can find the schedule on the calendar on
the webpage.

Slides and the handout also go up on the calendar (usually before
lecture), and inked versions of the slides go up after lecture (usually that
afternoon).

2

https://courses.cs.washington.edu/courses/cse332/25sp/calendar/calendar.html

Outline

Wrap up CircularArray Queues and Linked List Queues

How do we analyze code?

What is big-O formally?

What will big-O proofs be like?

3

“Circular” Array

A different queue implementation

Removing elements is expensive. What if we just remember where the next
element is?

10 17 3 4 15 13

front back

4

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front+1) % size;

 return item;

}

“Circular” Array

What about insertions?

We can “wrap around” (At least until the array is completely full.)

10 17 3 4 15 2313

front back

5

5

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front+1) % size;

 return item;

}

“Circular” Array

A different queue implementation

Removing elements is expensive. What if we just remember where the next
element is?

10 17 3 4 15 13

front back

6

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front+1) % size;

 return item;

}

Sketches don’t handle:

• What if queue is empty

(for either enqueue or

dequeue)

• How do you test if it’s

empty

• What if array is full?
• Keeping size up to date

• Etc.

Linked List

What do Enqueue and Dequeue look like? What are their time
complexities?

7

7 23 15

head tail

14

Linked List

What do Enqueue and Dequeue look like? What are their time
complexities?

8

//sketch only

Enqueue(item) {

 tail.next=new Node(item);

 tail=tail.next;

}

//sketch only

Dequeue() {

 item = head.data;

 head = head.next;

 return item;

}
Still just sketches!

Ask the same questions from

the circular array.

Notice that sometimes the

answer is “don’t worry about

it”!

Tradeoffs

What makes the circular queue implementation different from the linked
list implementation? In what ways is one more desirable than the other?

9

Tradeoffs

LINKED LIST

10

𝑂(1) enqueue and dequeue

Pointers lead to slower constants
and worse cache behavior (see
CSE351)

More space used per element
(pointers take space)

Not in Queue ADT, but if you want
to insert at position k, must traverse
k elements first (or last n-k).

CIRCULAR ARRAY

𝑂 1 enqueue and dequeue unless
the array is already full.

Faster constants, but when you
resize you get a very slow insert.

Less space when full, but potentially
a lot of wasted space if queue gets
huge then tiny.

Not in Queue ADT, but if you want
to insert at position k, must shift last
n-k elements (or first k).

Tradeoffs

This class is built on tradeoffs

If data structure A beats data structure B in every way, you’ll choose A.

Usually, data structure A is better in some ways, and B is better in
others.

Knowing the tradeoffs will help you frame the choice.

If you know the size in advance, you might choose the array (no resize
worries)

If any one insertion being slow would be very bad, you might choose
the linked list

11

Common Tradeoffs

Often there are multiple unavoidable tradeoffs

-Time vs. space

-One operation vs. another being as fast as possible

-Generality vs. simplicity vs. performance

These tradeoffs are why there are many data structures.

And well-trained computer scientists have internalized those tradeoffs
to pick.

12

Asymptotic Analysis

13

Algorithm Analysis

I have some problem I need solved.

I ask Alysa and Yafqa. They both have different ideas for how to solve
the problem. How do we know which is better?

Easy. Have them both write the code and run it and see which is faster.

THIS IS (often) A TERRIBLE IDEA

How can we analyze their suggestions before they have to write the
code, and in a way that is independent of their machines?

14

Algorithm Analysis

“Just code it up and see what happens” isn’t a great strategy for code
analysis.

Running time of actual code depends on the computer you’re running
on (CPU power, but also OS, other programs running in the
background), details of the implementation.

You probably won’t consider all potential inputs in testing
-What if you missed a really bad case?

-You probably won’t be able to explain patterns clearly

Wasteful if you decide this isn’t the right implementation

15

Comparing Algorithms

We want to know when one algorithm will be better than another
-Better might mean faster.

-Or using less memory.

We really care about large inputs.
-If n=15, any algorithm will probably finish in less than a second anyway…

Want our answer to be independent of computer speed or
programming language.

And we want an answer that’s mathematically rigorous.
-In a 311-like sense. We should have a proposition that we can prove true or false.

16

Algorithm Analysis

Usually, define a function 𝑓: ℕ → ℕ

Domain: size of the input to the code (e.g., number of elements in our
array, number of characters in our string)

Co-Domain: Counts of resources used (e.g., number of basic operations
[time], number of bytes of memory used, etc.)

Be sure you’re clear on the units of your domain and co-domain
-It won’t make a big difference for this class, but in complexity theory (e.g. CSE 431,
some of 421) bits of input vs. number of elements as input can make a big
difference.

17

What Are We Counting?

Worst case analysis
-What’s the 𝑓(𝑁) [running time, memory, etc.] for the worst state our data structure can be
in or the worst input we can give of size 𝑁? (i.e. the biggest 𝑓 could be on an input size 𝑁)

Best case analysis
-What is 𝑓 𝑁 for the best state of our structure and the best question of size 𝑁? (the
smallest 𝑓 𝑁 could be)

Average case analysis
-What is the value of 𝑓(𝑁) on average over all possible inputs of size 𝑁?

-Have to ask this question very carefully to get a meaningful answer

We usually do worst case analysis.

18

Analyzing Code

Assume basic operations take the same constant amount of time.

What’s a basic operation?
-Adding ints or doubles

-Assignment

-Incrementing a variable

-A return statement

-Accessing an array index or an object field

What’s not a basic operation?
-Making a method call.

This is a LIE but it’s a very useful lie.

19

Example

Linear search

20

int linearSearch(int[] A, int target){

 for(int i = 0; i < A.length; i++){

 if(A[i] == target)

 return i;

 }

 return -1;

}

What is the worst case number of simple

operations for this piece of code?
Let A have 𝑛 entries.

Asymptotic Notation

That’s a nice formula. But does everything in it matter?

Multiplying by constant factors doesn’t matter – let’s just ignore them.

Lower order terms don’t matter – delete them.

Gives us a “simplified big-O”

10𝑛 log 𝑛 + 3𝑛

5𝑛2 log 𝑛 + 13𝑛3

20𝑛 log log 𝑛 + 2 𝑛 log 𝑛

23𝑛

21

Asymptotic Notation

That’s a nice formula. But does everything in it matter?

Multiplying by constant factors doesn’t matter – let’s just ignore them.

Lower order terms don’t matter – delete them.

Gives us a “simplified big-O”

10𝑛 log 𝑛 + 3𝑛

5𝑛2 log 𝑛 + 13𝑛3

20𝑛 log log 𝑛 + 2 𝑛 log 𝑛

23𝑛

22

𝑂(𝑛 log 𝑛)

𝑂 𝑛3

𝑂(𝑛 log 𝑛)

𝑂(8𝑛)

Formally Big-O

We wanted to find an upper bound on our algorithm’s running time,
but

-We don’t want to care about constant factors.

-We only care about what happens as 𝑛 gets large.

The formal, mathematical definition is Big-O.

23

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-𝑶

We also say that 𝑔 𝑛 “dominates” 𝑓(𝑛).

Why is that the definition?

Why 𝑛0?

24

Why 𝑐?

𝑓(𝑛) is 𝑂(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-𝑶

Why Are We Doing This?

You already intuitively understand what big-O means.

Who needs a formal definition anyway?

-We will.

Your intuitive definition and my intuitive definition might be different.

We’re going to be making more subtle big-O statements in this class.
-We need a mathematical definition to be sure we’re on the same page.

Once we have a mathematical definition, we can go back to intuitive
thinking.
-But when a weird edge case, or subtle statement appears, we can figure out what’s
correct.

25

Edge Cases

True or False: 10𝑛2 + 15𝑛 is 𝑂(𝑛3)

[this is an edge case]

It’s true! – it fits the definition.

Big-O is just an upper bound. It doesn’t have to be a good upper
bound.

If we want the best upper bound, we’ll ask you for a tight big-O bound.

𝑂 𝑛2 is the tight bound for this example.

It is (usually) technically correct to say your code runs in time 𝑂(𝑛𝑛!).

-DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

26

O, Omega, Theta [oh my?]

Big-O is an upper bound
-My code uses at most this many resources (e.g. runs in at most this much time)

Big-Omega is a lower bound

Big Theta is “equal to”

27

𝑓(𝑛) is Ω(𝑔 𝑛) if there exist positive

constants 𝑐, 𝑛0 such that for all 𝑛 ≥ 𝑛0,

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛) if

𝑓 𝑛 is 𝑂(𝑔 𝑛) and 𝑓 𝑛 is Ω(𝑔 𝑛).

Big-Theta

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

28

O(𝑔 𝑛) is the set of all functions 𝑓 𝑛 such

that there exist positive constants 𝑐, 𝑛0 such

that for all 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O (alternative definition)

For that reason, some people write 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 where we wrote

“𝑓 𝑛 is 𝑂(𝑔 𝑛)”.

Other people write “𝑓 𝑛 = 𝑂 𝑔 𝑛 ” to mean the same thing.

We never write 𝑂(5𝑛) instead of 𝑂(𝑛) – they’re the same thing!

 It’s like writing
6

2
 instead of 3. It just looks weird.

Useful Vocab

The most common running times all have fancy names:

𝑂(1) constant

𝑂(log 𝑛) logarithmic

𝑂 𝑛 linear

𝑂(𝑛 log 𝑛) “n log n”

𝑂 𝑛2 quadratic

𝑂(𝑛3) cubic

𝑂(𝑛𝑐) polynomial (where c is a constant)

𝑂(𝑐𝑛) exponential (where c is a constant)

29

What’s the base of the log?

If I write log 𝑛, without specifying a base, I mean log2 𝑛 .

But does it matter for big-O?

Suppose we found an algorithm with running time log5 𝑛 instead.

Is that different from 𝑂 log2 𝑛 ?

No!

log𝑐 𝑛 =
log2 𝑛

log2 𝑐
 If 𝑐 is a constant, then log2 𝑐 is just a constant, and we can

hide it inside the 𝑂().

30

𝑂, Ω, Θ vs. Best, Worst, Average

It’s a common misconception that Ω() is “best-case” and 𝑂() is “worst-
case”. This is a misconception!!

𝑂() says “the complexity of this algorithm is at most” (think ≤)

Ω() says “the complexity of this algorithm is at least” (think ≥)

You can use ≤ on worst-case or best case; you can use ≥ on worst-case
or best-case.

Best/Worst/Average say “what function 𝑓 am I analyzing?”

𝑂, Ω, Θ say “let me summarize what I know about 𝑓, it’s ≤, ≥, =…”

31

Some Example Sentences

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best-case, linear search

will take at most as much time as

binary search ever takes. That is,

it’s 𝑂(log 𝑛) .

In the best case, linear search still

has to look at array index 0; those

operations still take time, so you

will take at least Ω(1) time.

In the best case, linear-

search is both 𝑂(1) and

Ω 1 so it is Θ(1).

Worst-

Case

Analysis

In the worst-case, binary search

will take at most as much time as

linear search ever takes. That is,

it’s 𝑂(𝑛).

In the worst-case, linear search will

check at least as many locations in

the array as binary search does in

the worst-case, so it will take at

least Ω(log n) time

In the worst-case, binary

search takes Θ(log 𝑛) time.

In the worst-case, linear

search takes Θ(𝑛) time.

32

Why Might you use it?

𝑶 𝛀 𝚯

Best-

Case

Analysis

In the best case, my algorithm is

pretty good, it takes at most

𝑂(𝑡𝑖𝑚𝑒)

Even in the best-case, this

algorithm still takes a while; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the best case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

Worst-

Case

Analysis

Even in the worst-case my

algorithm, isn’t that bad! It takes

at most 𝑂(𝑡𝑖𝑚𝑒) time in the

worst-case

In the worst-case, there’s still a lot

of work the algorithm has to do; it

takes at least Ω(𝑡𝑖𝑚𝑒)

In the worst case, my

algorithm takes exactly

Θ(𝑡𝑖𝑚𝑒)

33

Some Log Review

34

Logs

log 𝑛𝑘 = 𝑘 ⋅ log(𝑛).

log 2𝑛 = 𝑛 (logs and exponents are inverse functions.

log(log 𝑥) is usually written log log x

Grows VERY slowly (as slowly as 2(2𝑥) grows quickly)

log2(log2(# atoms in universe)) = log2(log2(1080)) = log2(80 ⋅ log2(10)) ≈ 8.054

Don’t confuse with log 𝑥 ⋅ log 𝑥 usually written log2(𝑥).

log log 𝑥 << log 𝑥 << log2(𝑥) (where << is “asymptotically less than”)

35

Writing Big-O Proofs

36

Proving Big-O, Formally

Big-O is an ∃𝑐, 𝑛0∀𝑛 statement.

I.e., an exists statement with a “forall” inside.

How do you prove an exists statement?

How do you prove a for-all statement?

37

Proving Big-O, Formally

Big-O is an ∃𝑐, 𝑛0∀𝑛 statement.

I.e., an exists statement with a “forall” inside.

How do you prove an exists statement?

Show the 𝑐, 𝑛0 that will work. Give specific values.

How do you prove a for-all statement?

Introduce an arbitrary 𝑛.

38

Writing Proofs

Claim: For every odd integer 𝑦, there exists an even integer 𝑥, such that
𝑥 > 𝑦.

Proof:

Let 𝑦 be an arbitrary odd integer. By definition, 𝑦 = 2𝑧 + 1 for some
integer 𝑧.

Consider x = 2(𝑧 + 1).

𝑥 is even (since it can be written as 2 times some integer) and

𝑥 = 2 𝑧 + 1 = 2𝑧 + 2 > 2𝑧 + 1 = 𝑦. So 𝑥 meets both of the required
properties.

39

Writing Proofs

Where did that 𝑥 = 2 𝑧 + 1 come from?

You probably came up with that even integer first, before you started
writing the proof.

That was some “scratch work” – the insight isn’t explained in the final
proof

-You just say “Consider”

Don’t try to skip the scratch work when drafting your big-O proofs.

-But it won’t appear in your final version.

40

Using the Definition

Let’s show: 10𝑛2 + 15𝑛 is 𝑂(𝑛2)

41

Using the Definition

Let’s show: 10𝑛2 + 15𝑛 is 𝑂(𝑛2)

42

Recreation of whiteboard:

Scratch work:

10𝑛2 ≤ 10𝑛2

15𝑛 ≤ 15𝑛2 for 𝑛 ≥ 1
10𝑛2 + 15𝑛 ≤ 25𝑛2 for 𝑛 ≥ 1

Proof:

Take 𝑐 = 25 and 𝑛0 = 1.

The inequality 10𝑛2 ≤ 10𝑛2 is always true. The inequality 15𝑛 ≤ 15𝑛2 is true for 𝑛 ≥ 1, as the right hand side

is a factor of 𝑛 more than the right hand side.

As long as both inequalities are true we can add them, thus

10𝑛2 + 15𝑛 ≤ 25𝑛2 holds as long as 𝑛 ≥ 1.

This is exactly the inequality we needed to show.

	Slide 1: Algorithm Analysis
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: “Circular” Array
	Slide 5: “Circular” Array
	Slide 6: “Circular” Array
	Slide 7: Linked List
	Slide 8: Linked List
	Slide 9: Tradeoffs
	Slide 10: Tradeoffs
	Slide 11: Tradeoffs
	Slide 12: Common Tradeoffs
	Slide 13: Asymptotic Analysis
	Slide 14: Algorithm Analysis
	Slide 15: Algorithm Analysis
	Slide 16: Comparing Algorithms
	Slide 17: Algorithm Analysis
	Slide 18: What Are We Counting?
	Slide 19: Analyzing Code
	Slide 20: Example
	Slide 21: Asymptotic Notation
	Slide 22: Asymptotic Notation
	Slide 23: Formally Big-O
	Slide 24: Why is that the definition?
	Slide 25: Why Are We Doing This?
	Slide 26: Edge Cases
	Slide 27: O, Omega, Theta [oh my?]
	Slide 28: Viewing O as a class
	Slide 29: Useful Vocab
	Slide 30: What’s the base of the log?
	Slide 31: cap O ,cap omega ,cap theta vs. Best, Worst, Average
	Slide 32: Some Example Sentences
	Slide 33: Why Might you use it?
	Slide 34: Some Log Review
	Slide 35: Logs
	Slide 36: Writing Big-O Proofs
	Slide 37: Proving Big-O, Formally
	Slide 38: Proving Big-O, Formally
	Slide 39: Writing Proofs
	Slide 40: Writing Proofs
	Slide 41: Using the Definition
	Slide 42: Using the Definition

