
Welcome!

Welcome to CSE 332

You’re here early!

Grab a handout from the front, or from the webpage: cs.uw.edu/332

You can find the slides there too (see the calendar)

1

https://cs.uw.edu/332

Welcome to CSE 332 CSE 332 Spring 25

Lecture 1

2

Outline

Course Mechanics

Start of content

-Review of queues and stacks

3

Your TODO list

Make sure you’re on Ed.

Get started on Exercise 0 (and update your IDE/java installs while you’re
at it).

4

Staff

Instructor: Robbie Weber

Ph.D. from UW CSE in theory

Fifth year as teaching faculty

Office: CSE2 311

Email: rtweber2@cs.washington.edu

TAs
Jacklyn Cui

Charles Hamilton-Eppler

Anthony He

Aaron Honjaya

Yafqa Khan

Alysa Meng

Cindy Ni

Juliette Park

Hana Smahi

Samarth Ramya Venkatesh

Iris Zhao

Rubee Zhao

Jolie Zhou

What’s in this course?

Data Structures and Parallelism

Data structures and Algorithms (about 70% of the course)

-Starting to really think like a computer scientist.

-Make design decisions, think about trade-offs.

-Core data structures and algorithms (timeless, classic material).

-Mathematically analyze those structures and algorithms.

-Implement them

Parallelism

-First serious treatment of programming with multiple threads

6

Goals

By the end of the quarter you will

-Understand the most common tools for storing and processing
common data types.

-Consider tradeoffs between tools you could use.

So that you can

-Make good design decisions on your code

-Justify and communicate those decisions

7

Logistics

Textbook:

 Weiss, Data Structures and Algorithm Analysis in Java

 OPTIONAL (useful if you want more info, or an alternative presentation)

Ed (message board).

Gradescope.

You were invited to Ed and Gradescope already (if you were registered
by last Friday)

8

Logistics – Exercises

Assigned throughout the quarter, about 15 in total.

We’ll usually have two per week.
-Usually one due on Monday; one due on Friday (except at the end of the quarter)

-About half programming, half theory (at most one of each type per week)

Starting earlier is better (they can take some thought and/or some
debugging).

We’ll count the 12 highest scores, drop the others.

9

Logistics – Late Days

You have 6 late days to use during the quarter; a late day lets you
submit 24 hours later than you would have otherwise.

You can use at most 2 late days per exercise.

10

Logistics – Exams

Midterm Wed Apr 30, 6-7:30 PM.

Final Thursday June 12th 12:30-2:20

Both are “combined” exams (same time regardless of which section
you’re in).

Please read the conflict policy in the syllabus if you might not be able to
make those times.

11

Logistics – Work

Grade Breakdown

Exercises Midterm Final

12

Exercises: 60%

Midterm: 15%

Final: 25%

Logistics – Section

Sections start this week

-Chance to practice problems about what we learned in lecture.

-Occasionally learn new material

We won’t record sections.

Please strongly consider attending section in-person – the ability to
discuss and ask questions in the smaller setting is hard to replace by just
looking at the handout.

-But participation/attendance is not tracked

13

Academic Honesty

High level discussion is fine.

High level means you won’t look at someone else’s code, nor at their
half-finished (or fully finished) writeup for the theory exercises

But you must:
-Not take any written notes away from your discussion.

-List everyone you collaborated with on your assignment.

-Take a 30-minute break between your discussion and writing/coding up your
assignment.

Goal is for you to learn the material.

More details, including examples, on the webpage later this week.

14

Abstract Data Types

15

Abstract Data Types

An Abstract Data Type (ADT)

Mathematical description of a thing and a set of operations to interact
with that thing.

Mathematical, think “like 311” --- precise enough you could do a proof
on it (not necessarily “a bunch of numbers”)

Thing think “organized data”

16

Abstract Data Type
An Abstract Data Type (ADT) is a mathematical definition of an object with
operations to interact with that object.

Queue ADT

dequeue() – returns the element

that has been in the collection the

longest, and removes it.

state

behavior
Set of elements

peek() – find, but do not remove the

element that has been in the

collection the longest.

enqueue(element) – add a new

element to the collection.

Stack ADT

pop() – returns the element that

has been in the collection the

shortest, and removes it.

state

behavior
Set of elements

peek() – find, but do not remove

the element that has been in the

collection the shortest.

push(element) – add a new

element to the collection.

17

Why Define an ADT?

ADTs let us:

Identify patterns more easily: When you say “hey, I need an object that
gives me back the thing I put in most recently” can remember what
does that if it has a name.

Stacks show up in: the call stack (managing recursion), algorithms for handling
context-free grammars, depth-first search (we’ll see it later this quarter), and more…

Communicate more easily: Telling someone “keep track of this data on a
stack” is easier than “make a linked list, and when you insert or remove
update the head, not the tail, and keep track of the size, and…”

Reuse code!: Implement stacks once (or maybe a handful of versions)
and reuse

18

What Data Structures for a Queue?

A data structure is a specific organization of data (and associated
algorithms) to implement an abstract data type.

How would you implement a queue?

I.e., what data structure would you use?

19

Data Structure

A clever way of organizing data points

-A data structure is an implementation of an ADT.

Ways to implement a queue

Array

LinkedList

10 17 3 4 15 13

7 23 15

head tail

14

20

“Circular” Array

A different queue implementation

Removing elements is expensive. What if we just remember where the next
element is?

10 17 3 4 15 13

front back

21

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front-1) % size;

 return item;

}

“Circular” Array

What about insertions?

We can “wrap around” (At least until the array is completely full.)

10 17 3 4 15 2313

front back

5

22

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front-1) % size;

 return item;

}

“Circular” Array

A different queue implementation

Removing elements is expensive. What if we just remember where the next
element is?

10 17 3 4 15 13

front back

23

//sketch only

Enqueue(item) {

 Q[back]=item;

 back = (back+1) % size;

}

//sketch only

Dequeue() {

 item = Q[front];

 front = (front-1) % size;

 return item;

}

Sketches don’t handle:

• What if queue is empty

(for either enqueue or

dequeue)

• How do you test if it’s

empty

• What if array is full?
• Keeping size up to date

• Etc.

Linked List

What do Enqueue and Dequeue look like? What are their time
complexities?

24

7 23 15

head tail

14

Linked List

What do Enqueue and Dequeue look like? What are their time
complexities?

25

//sketch only

Enqueue(item) {

 tail.next=new Node(item);

 tail=tail.next;

}

//sketch only

Dequeue() {

 item = head.data;

 head = head.next;

 return item;

}
Still just sketches!

Ask the same questions from

the circular array.

Notice that sometimes the

answer is “don’t worry about

it”!

Tradeoffs

What makes the circular queue implementation different from the linked
list implementation? In what ways is one more desirable than the other?

26

Tradeoffs

LINKED LIST

27

𝑂(1) enqueue and dequeue

Pointers lead to slower constants
and worse cache behavior (see
CSE351)

More space used per element
(pointers take space)

Not in Queue ADT, but if you want
to insert at position k, must traverse
k elements first.

CIRCULAR ARRAY

𝑂 1 enqueue and dequeue unless
the array is already full.

Faster constants, but when you
resize suddenly a very slow insert.

Less space when full, but potentially
a lot of wasted space if queue gets
huge then tiny.

Not in Queue ADT, but if you want
to insert at position k, must shift last
n-k elements.

Tradeoffs

This class is built on tradeoffs

If data structure A beats data structure B in every way, you’ll choose A.

Usually, data structure A is better in some ways, and B is better in
others.

Knowing the tradeoffs will help you frame the choice.

If you know the size in advance, you might choose the array (no resize
worries)

If any one insertion being slow would be very bad, you might choose
the linked list

28

Common Tradeoffs

Often there are multiple unavoidable tradeoffs

-Time vs. space

-One operation vs. another being as fast as possible

-Generality vs. simplicity vs. performance

These tradeoffs are why there are many data structures.

And well-trained computer scientists have internalized those tradeoffs
to pick.

29

Your TODO list

Make sure you’re on Ed.

Get started on Exercise 0 (and update your IDE/java installs while you’re
at it).

30

	Slide 1: Welcome!
	Slide 2: Welcome to CSE 332
	Slide 3: Outline
	Slide 4: Your TODO list
	Slide 5: Staff
	Slide 6: What’s in this course?
	Slide 7: Goals
	Slide 8: Logistics
	Slide 9: Logistics – Exercises
	Slide 10: Logistics – Late Days
	Slide 11: Logistics – Exams
	Slide 12: Logistics – Work
	Slide 13: Logistics – Section
	Slide 14: Academic Honesty
	Slide 15: Abstract Data Types
	Slide 16: Abstract Data Types
	Slide 17: Abstract Data Type
	Slide 18: Why Define an ADT?
	Slide 19: What Data Structures for a Queue?
	Slide 20: Data Structure
	Slide 21: “Circular” Array
	Slide 22: “Circular” Array
	Slide 23: “Circular” Array
	Slide 24: Linked List
	Slide 25: Linked List
	Slide 26: Tradeoffs
	Slide 27: Tradeoffs
	Slide 28: Tradeoffs
	Slide 29: Common Tradeoffs
	Slide 30: Your TODO list

