
CSE 332: Data Structures and Parallelism

Exercise 5 - Spec

Exercise 5 Spec (25sp)

The objectives of this exercise are

● Implement the mechanics of an efficient chaining hash table
● See how to write a good hash function for a new data structure
● Apply the advantages of a hash table by using it as part of an algorithm

that involves a large number of inserts and finds of a large dictionary.

Overview

This exercise consists of the following parts:

1. Complete an implementation of a separate chaining hash table data structure.
2. Write a good hash function for the Word class provided.
3. Use your implementation of the hash table to complete an implementation of a word

search algorithm, which searches through a grid of items for sequences that appear in a
given dictionary.

Parts 2 and 3 rely on each other, but part 1 can be done independently if you temporarily
refactor some code to use Java’s HashMap instead of your own separate chaining hash table
implementation. If you want to go this route for debugging, I’d recommend writing a “wrapper”
class the implements the DeletelessDictionary interface, but simply uses the java HashMap
class as the underlying data structure (or if you implement a contains method, you can use your
AVL implementation from exercise 4!).

Motivating Application: Word Search
For a newspaper word search puzzle, you’re given a grid of letters and a list of words. Your goal
is to find all of the given words within the grid. The challenge is that the words do not
necessarily appear in left-to-right order. Instead, the words can go in any of 8 directions:
left-to-right, right-to-left, vertically down, vertically up, or any of 4 directions diagonally (up-left,
up-right, down-left, down-right).

For this assignment, in addition to implementing a separate chaining hash table, you will be
completing an implementation of a word search solver. For this word search solver we use two
text files. One containing our grid of letters, the other containing a list of potential words. This
solver will use these slightly differently from the puzzles you might find in the newspaper. In the
newspaper it is guaranteed that all words in the list appear somewhere in the grid. For this
application our task will be to determine which of the words appear. Additionally, we’re
implementing the algorithm using generics, so rather than a grid of letters we could instead do a
wordsearch on a grid of integers, or doubles, or booleans, or pixels, or any other object we
could dream of!

You’ll see in the starter code and in the list of provided files below that we give you two pairs of
puzzles. One that is a small grid paired with a relatively short list of words (this is actually the list
of words used by xkcd author Randall Munroe for his Thing Explainer book, but with the swear
words removed). The other is a larger grid paired with a large list of words (this list of words is
the official scrabble dictionary).

https://en.wikipedia.org/wiki/Word_search
https://www.explainxkcd.com/wiki/index.php/Thing_Explainer

Implementation Guidelines

Your implementations in this assignment must follow these guidelines

● You may not add any import statements beyond those that are already present (except
for where expressly permitted in this spec). This course is about learning the mechanics
of various data structures so that we know how to use them effectively, choose among
them, and modify them as needed. Java has built-in implementations of many data
structures that we will discuss, in general you should not use them.

● Do not have any package declarations in the code that you submit. The Gradescope
autograder may not be able to run your code if it does.

● Remove all print statements from your code before submitting. These could interfere with
the Gradescope autograder (mostly because printing consumes a lot of computing time).

● Your code will be evaluated by the gradescope autograder to assess correctness. It will
be evaluated by a human to verify running time. Please write your code to be readable.
This means adding comments to your methods and removing unused code (including
“commented out” code).

Provided Code
Several java classes have been provided for you in this zip file. Here is a description of each.

● DeletelessDictionary

○ A dictionary interface. This differs from the one discussed in class in the following
ways:

■ It does not have a delete operation (hence being called a “deleteless”
dictionary). This means that once a key-value pair has been added to the
dictionary there is no way of removing that key later.

■ It requires the operations getKeys and getValues which return a list of
the keys or values in the dictionary. These lists must be index-aligned with
one another. By this we mean that index 0 of getKeys is associated with
the value at index 0 of getValues. More generally,
getKeys().get(i).equals(getValues().get(i)) should always be
true.

■ It requires the operation contains which returns true or false to indicate
whether the given key is present in the dictionary.

○ Do not submit this file
● ChainingHashTable

○ When you download the zip, this will contain the beginnings of an implementation
of a separate chaining hash table. We have implemented a constructor as well as
the isEmpty and size methods. You’re welcome to change any of those if you’d
like. You may also add fields to this class if you wish.

○ To help you with debugging, we have provided a toString method. We will not use
this method in the autograder, so you’re welcome to change that if you wish as
well.

○ We’ve also provided an array of primes that will be useful for rehashing. Your
implementation must be able to rehash to a size beyond these pre-compute
primes. There’s more guidance on how to do this in the specification for insert
below.

○ You will submit this file to Gradescope
● Item

○ This class just encapsulates a key-value pair for adding to the chaining hash
table (think of it as playing a similar role as the nodes did in AVL trees). Overall,
the chaining hash table will be an array of linked lists of these items.

○ Do not submit this file
● Word

○ This class is intended to serve sort of like a generic form of a string. Essentially it
is just an array of some generic type T that’s encapsulated in an object (you can
think of it like a fixed-sized array list).

○ We’ve added some methods, though, to make things a bit easier for the word
search application. Some important but routine operations have been provided,
including a toString and equals method (neither of which you should change in
your final submission).

https://www.cs.washington.edu/cse332/exercises/ex5.zip

○ Most importantly here we’ve added a really handy constructor. You can construct
a Word by either giving it an array, which it then just makes a shallow copy of, or
by giving it a grid along with the start cell, length and direction. This latter
constructor will shallow-copy all indices of the grid starting from the given cell and
then preceding the indicated direction (any of the 8 valid directions for a word
search).

○ The only thing you need to do in this class is implement the hashCode method
(see details below). You should not change anything else.

○ You will submit this file to Gradescope
● WordSearch

○ This is the class that actually does the word searching. We’ve provided the
trickiest part of the code for you (the part that actually navigates the grid, that
method is called wordSearch). We’ve just left out the parts that actually use the
hash table.

○ To assist with debugging we added a method called printFoundWords that
prints out all of the words found within the grid.

○ You will submit this file to Gradescope
● Client

○ This class contains the main, which is what will make the word search happen!
The main method invokes methods which will read the grid and dictionary (i.e.
word list) files, then creates a WordSearch object with them, then does the word
search! It currently does this for both of the small and large puzzles. To check
correctness it only checks if the number of words found is correct, but does not
check that the actual words were the correct ones.

○ Currently there are no tests provided specifically for the ChainingHashTable. The
expectation is that you obtained experience on how to verify dictionary behavior
from Exercise 4.

○ Do not submit this file
● Various text files

○ These text files contain the information associated with each example puzzle.
The ones whose names begin with the prefix “small” are associated with the
small test. The rest with the big test. Each test has a “puzzle” file with the grid, a
“words” file with the list of valid words, and a “solution” file which contains all of
the words that your algorithm should find.

Part 1: ChainingHashTable
To obtain good performance of our DeletelessDictionary we will implement a separate
chaining hash table data structure according to the comments provided for each method in the
interface. You should finish all non-yet implemented methods in the DeletelessDictionary
interface.

It will be helpful to know, for this assignment, that all objects in Java have a hashCode method.
This method returns an integer that can then be used in various ways, such as selecting an
index in a hash table! When implementing the ChainingHashTable class, you may assume that
this hashCode method has been implemented to be “good” for the type that the data structure
will contain. The integer given, though, is not guaranteed to be in the range of your underlying
array.

Here is the list of methods you must implement, along with any guidelines for implementation:

● find

○ This behavior should pretty much just match how we described it in class. You
give it a key, it returns the associated value (if it exists)

● Contains
○ This one is new, but the algorithm is almost exactly the same as find, but can be

convenient in some circumstances. You give it a key, it returns true or false to
indicate whether it appears in the dictionary at all.

● Insert
○ This behaves just like we discussed, but we’ll review here. You give it a key and

a value, it then pairs together that key and value in the dictionary. If the key
already had some associated value, it should return the old value. If the key was
not already present, it should return null.

○ Most importantly, here, you will need to resize your array and rehash the items
when the load factor gets too high. The size should be chosen to be a prime
number from the provided list of pre-computed primes as long as possible. Once
you run out of primes, you should use a different method for selecting the next
size of the array (keeping sure that the running time is still constant amortized!).
As a tip, numbers that are 1 more than a power of 2 tend to behave a lot like
primes (and have a higher probability of being primes themselves)!

● getKeys
○ Returns a list of all keys in the dictionary

● getValues
○ Returns a list of all values in the dictionary. The order of this list should parallel

the list returned by getKeys. That is, the value at index i should be associated
with the key at index i of getKeys.

Part 2: Word.hashCode()
The only way to obtain good performance from hash tables is to use a good hash function. In
Java, Object has a method called hashCode that serves as the default hash function. As with
the default behavior of other Object methods like equals and toString, the default hashCode
is almost certainly not going to do what we want, so we’ll need to override it.

Write your own implementation of the hashCode method for the Word class to be a “good” hash
function. Keep in mind the properties of a “good” hash function that we discussed in class. You
may assume that the objects that the Word contains themselves have a “good” hash function
implementation.

Beware! When Java integers exceed a certain size they may become negative! This is called
integer overflow. You might find Java’s Math.floorMod() helpful for dealing with negative
hashes.

Part 3: WordSearch
Now for the main event – the WordSearch algorithm! For this part you will finish our
implementation. Rest assured, though, the hardest parts are provided for you. The only things
you need to implement are the parts that actually use the dictionary data structure!

The most important fields for your pieces are a dictionary and a 2-d array. The dictionary (which
will be your ChainingHashTable implementation) maps Word objects to booleans. Initially, it
will contain all words from the list of words as keys, with each key associated with the value
false. This dictionary is used to keep track of which words from the dictionary have been found
in the grid (which is represented by the 2-d array).

The WordSearch constructor does the following:

● Its parameters are a two dimensional array to serve as the grid to search in and a list of
Word objects to indicate the dictionary of words. In this context we mean “dictionary” as
in a list of words in some language, e.g. Webster’s Dictionary.

● It constructs a ChainingHashTable. In other words, it creates an instance of the class
you implemented in Part 1.

● It adds each Word in the input list of Word objects as a key in the ChainingHashTable,
with its value being false. The value indicates whether the Word was found in the grid,
so before searching we haven’t seen it yet.

● It calls the wordSearch method, which looks for each Word within the grid and updates
the value associated with each Word in the ChainingHashTable to be true if it appears.

You need to implement the following methods:

● addIfWord

○ The argument to the method will be a Word object. This Word object will be a
sequence found by the wordSearch method. This method should update the

dictionary so that, if the given word is present, it is associated with the value true
to indicate it has been found in the grid. If the given Word is not already a key in
the dictionary then this method should not modify the dictionary.

● countWords

○ This method should return the number of words from the list of valid words that
were found in the grid.

● getWords

○ This method returns a list of all of the words that were found within the grid.
There is no particular requirement about the order that the words should appear.

	Exercise 5 Spec (25sp)
	Overview
	Motivating Application: Word Search
	Implementation Guidelines
	Provided Code
	Part 1: ChainingHashTable
	Part 2: Word.hashCode()
	Part 3: WordSearch

