
Exercise 2 Spec (25sp)

The objectives of this exercise are:

●​ Understand the binary heap data structure by implementing it
●​ See how to modify the binary heap data structure to add new operations

efficiently
●​ Apply the binary heap data structure to create a new data structure

Overview

This exercise consists of the following parts:

1.​ Build a binary min heap
○​ In this section we will provide descriptions of methods you must implement for a

binary min heap data structure, as well as the requirements for that
implementation

2.​ Build a binary max heap
○​ After building your binary min heap you will modify that implementation in order to

implement a binary max heap
3.​ Chess Leaderboard

○​ You will use your binary min heap and binary max heap implementations to
create a new data structure that we’re calling a TopKHeap. We’ll use this as a
data structure for tracking the best chess players of all time!

Motivation: Chess Ranking
The Elo rating system was created by Physicist Arpad Elo as a method for ranking chess
players in the United States Chess Federation. The challenge with chess ranking at the time
was that not all chess players can directly play each other. This means that to provide a
complete ranking of all players we need some way of determining the relative quality of players
who have never actually played head-to-head in a game.

The Elo system solves this problem by assigning a score to each player. This score is then used
to predict the likelihood of each player winning in a hypothetical head-to-head. The player with
the larger score is considered to be more likely to win the match, and the greater the magnitude
of the score difference, the more likely that outcome should be. For example, if Player A has an
Elo score that is 100 points higher than Player B, then Player A should win 64% of head-to-head
games played. If the difference is instead 200 points, then Player A should win 76% of the time.
The details of how the points map to probabilities is not important, so long as there exists a
mapping.

Because each game gives us information about a player’s skill level, every outcome will change
each player’s score. The more surprising the outcome, the more a player’s score is going to
change. For example, if Player A has a score that is 200 higher than player B does, and they
play 100 head-to-head games, neither player’s score should change if Player A wins 76 of them.
That’s exactly what we expected to happen! If Player A wins 80 of them, then Player A’s score
will increase slightly, and Player B’s score will decrease, because the result was very slightly
different from our expectation. If Player A wins only 25 of them, then Player A’s score will
decrease by a lot, and Player B’s score will increase substantially. By updating the scores after
each match, the Elo rating system can be used to predict who would win in any hypothetical
match, even if those two players never played each other, and even if they were not active or
alive at the same time (with some caveats)!

Today, the Elo system is used for much more than chess. For example, it was used for NCAA
football bowl selections from 1998-2013, a modified version is presently used for Women’s FIFA
rankings, many esports communities use it for ranking players, Topcoder and CodeForce use it
for online coding competitions, and it can be used for comparing AI models.

While in this assignment you will not be implementing Elo ratings, we will be writing a data
structure which might help us to keep track of the top contenders according to their Elo scores.
Considering the chess example, on any particular day there may be hundreds, thousands,
millions! of chess games going on. If each game adjusts every player’s Elo rating, then we want
to have a data structure to help us manage the ever-changing rankings.

If we only wanted to keep track of the best player, a heap might be a good choice. If we wanted
a perfect ranking of all chess players, we’d probably want to maintain a sorted list. In this
assignment, we’ll create a data structure that allows us to efficiently maintain the top k players
for any k we choose. We will call this data structure a TopKHeap.

https://en.wikipedia.org/wiki/Elo_rating_system
https://en.wikipedia.org/wiki/Comparison_of_top_chess_players_throughout_history
https://en.wikipedia.org/wiki/Comparison_of_top_chess_players_throughout_history
https://arxiv.org/abs/2112.00861

Implementation Guidelines

Your implementations in this assignment must follow these guidelines

●​ You may not add any import statements beyond those that are already present. This
course is about learning the mechanics of various data structures so that we know how
to use them effectively, choose among them, and modify them as needed. Java has
built-in implementations of many data structures that we will discuss, in general you
should not use them.

●​ Your Heap implementations must store all items in arrays. These arrays should use
index 0 for storing items. You should only create a list for the toList method.

●​ Do not have any package declarations in the code that you submit. The Gradescope
autograder may not be able to run your code if it does.

●​ Remove all print statements from your code before submitting. These could interfere with
the Gradescope autograder (mostly because printing consumes a lot of computing time).

●​ Your code will be evaluated by the gradescope autograder to assess correctness. It will
be evaluated by a human to verify running time. Please write your code to be readable.
This means adding comments to your methods and removing unused code (including
“commented out” code).

●​ For the sake of running times, you may consider all HashMap operations to run in
constant time.

Provided Code
Several java classes have been provided for you in the zip file. Here is a description of each.

●​ MyPriorityQueue

○​ A priority queue interface. It is called MyPriorityQueue because java already
has a built-in interface called PriorityQueue, and so this avoids any kind of
naming issues.

○​ Do not submit this file
●​ BinaryMinHeap

○​ You will create a Binary Min Heap data structure which implements the
MyPriorityQueue interface. Each method should satisfy the requirements
described in the spec and the comments in the MyPriorityQueue interface.

○​ You will submit this file to Gradescope
●​ BinaryMaxHeap

○​ You will create a Binary Max Heap data structure which implements the
MyPriorityQueue interface. It will be equivalent to BinaryMinHeap, except that
it’s a max heap!

○​ You will submit this file to Gradescope
●​ TopKHeap

○​ This data structure makes it efficient to insert items, update the priorities of items,
and find the top-k items (where k is a parameter given in the constructor). This
will be used for the “Chess Players” problem.

○​ You will submit this file to Gradescope
●​ ChessPlayer

○​ For testing purposes, we will be inserting these ChessPlayer objects into the data
structures above. Each object has a String representing the name and an int
representing that player’s Elo score. We have implemented a compareTo method
which orders according to Elo score. We have also implemented an equals
method which considers two ChessPlayers to be equal if they have both the
same name and Elo score. There is a hashCode method implemented for
efficient use of HashMaps.

○​ Do not submit this file
●​ Client

○​ This class performs some basic testing of some methods within the above
classes. The gradescope autograder will do more precise testing than this.

○​ Do not submit this file

Part 1: BinaryMinHeap
The TopKHeap data structure that we create will make use of binary heaps like we discussed in
class. To get started, implement a binary min heap data structure as described here.

The BinaryMinHeap data structure uses java generics to store any classes which implement
the Comparable interface, guaranteeing that they have a compareTo method. Recall that to use
the compareTo method you invoke it as an instance method of an object, and provide a second
object as an argument. The result is then an integer which indicates which object is “greater”. In
particular, if we call thingA.compareTo(thingB) we expect the result to be a negative integer
if thingA < thingB, it should be a positive integer if thingA > thingB, and it should be 0 if
thingA == thingB. To keep it straight in my head, I remember that
thingA.compareTo(thingB) gives the sign of thingA - thingB.

In lecture we discussed that we can have a value distinct from its priority in a heap. For this data
structure we will instead use the value itself as the priority using the compareTo method. There
are some additional methods beyond those described in the ADT from class, however we have
discussed at least the idea (and in some cases pseudocode) for all of them! Note that we used
different names for a few of the functions in lecture (e.g., removeMin() is called extract() in
the exercise code). See the method comments in MyPriorityQueue for the expected behavior
and required running times. There are also headings for some recommended private helper
methods in BinaryMinHeap (and comments describing the intended behavior). You don’t have to
use them, but I think it will make your life easier to do so!

A few functions have implementations provided. These are intended to be helpful, but you may
alter them if you would prefer they work differently.

Part 2: BinaryMaxHeap
The TopKHeap data structure will actually be using BOTH a max heap and a min heap. Modify
your BinaryMinHeap implementation to additionally implement a BinaryMaxHeap. You’ll see that
almost all of the methods will be identical for the max heap. If you would prefer, you’re welcome
to refactor your implementations to have a shared abstract class for those identical methods.
This is not required, though. You’d be welcome to just copy-paste those implementations. If you
do use an abstract class, make sure you submit it to Gradescope!

Part 3: TopKHeap
Now the moment we’ve been waiting for, the TopKHeap! In this data structure we make use of a
max heap and a min heap to maintain a collection of the top k chess players. Implement all
methods provided. See the method comments for the expected behavior and required running
times.

	Exercise 2 Spec (25sp)
	Overview
	Motivation: Chess Ranking
	Implementation Guidelines
	Provided Code
	Part 1: BinaryMinHeap
	Part 2: BinaryMaxHeap
	Part 3: TopKHeap

