CSE 332: Data Structures & Parallelism

Lecture 25: Complexity Classes and Tractability

Ruth Anderson

Autumn 2025

(Slides adapted from Nathan Brunelle)

Administrative

- EX10 Concurrency, Due TONIGHT Mon Nov 24
- EX11 MSTs, programming, Due Mon Dec 1
- EX12 P/NP, last exercise! Due Fri Dec 5 (last day of class)
- Lecture on Wed 11/26
 - 12:30pm Optional TA Guest lecture: Tries & More Parallelism
 - 3:30pm Class Cancelled
- Resources!
 - Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed (Samarth) both in CSE1 006. A space to ask about course content and topics only as opposed to direct help with exercises.
 - 1-on-1 Meeting Requests Request a meeting with a staff member if you cannot make it to regularly scheduled office hours, or feel like you have an issue that requires a more in depth discussion.

Plotting Running Times

Running times we've seen:

- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n^2)$
- $\Theta(2^n)$

Input Size

Examining Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

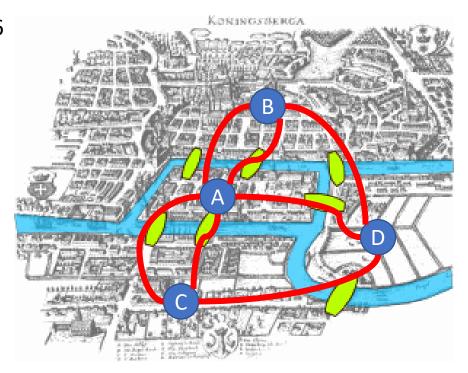
	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Tractability

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
 - For machine learning, big data, etc. tractable might mean O(n) or even $O(\log n)$
 - For most applications it's more like $\mathcal{O}(n^3)$ or $\mathcal{O}(n^2)$
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 - It's rare to have problems which require a running time of n^5 , for example

7 Bridges of Königsberg

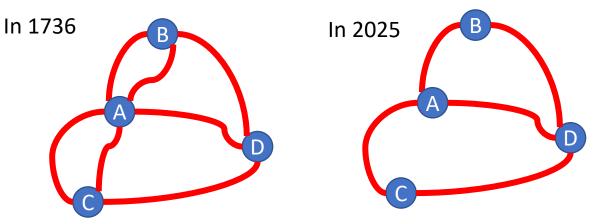
In 1736



In 2025

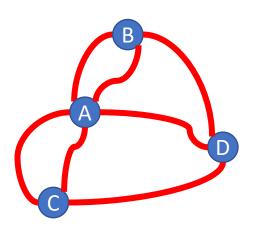
The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?

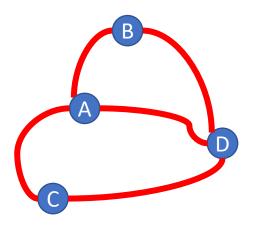
Euler Path Problem

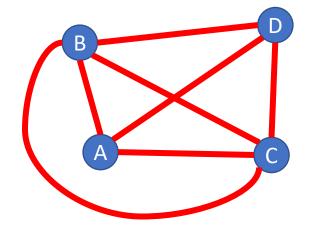


- Path:
 - A sequence of nodes $v_1, v_2, ...$ such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)
- Euler Path:
 - A path such that every edge in the graph appears exactly once
 - If the graph is not simple then some pairs need to appear multiple times!
- Euler path problem:
 - Given an undirected graph G = (V, E), does there exist an Euler path for G?

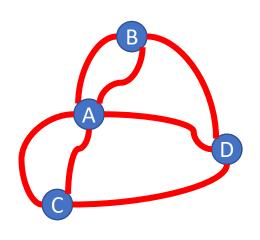
Examples: Which of the graphs below have an Euler path?



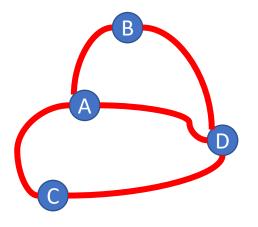




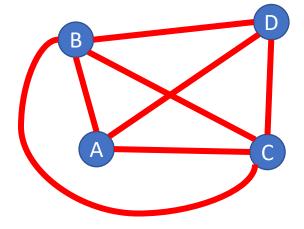
Examples: Which of the graphs below have an Euler path? (Answers)



No Euler path exists!

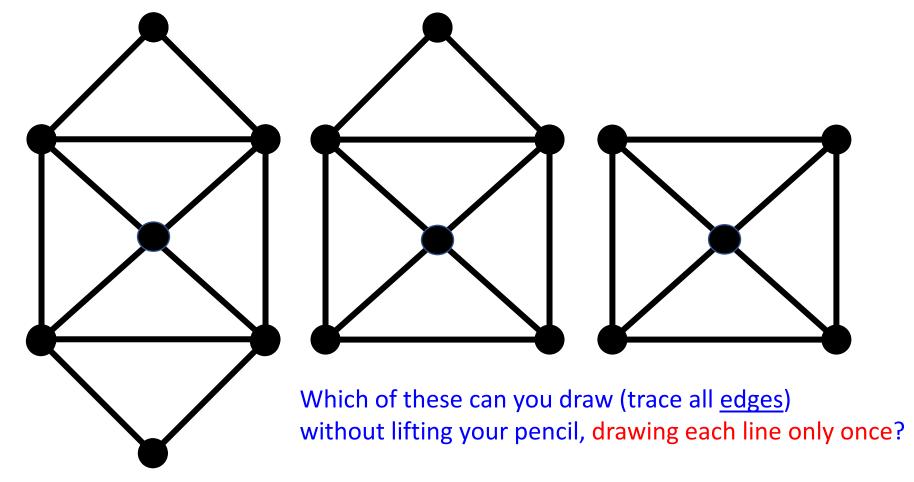


Euler path exists! A, B, D, A, C, D



Euler path exists! A, B, C, D, A, C, B, D

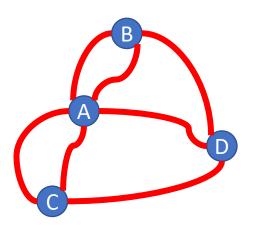
Which of the graphs below have an Euler path?

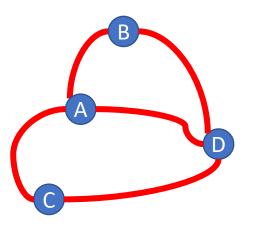


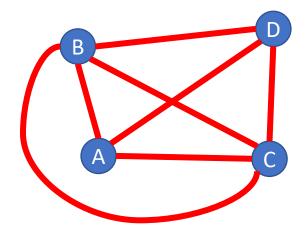
Can you start and end at the same point?

Euler's Theorem

 A graph has an Euler Path if and only if it is connected and has exactly 0 or 2 nodes with odd degree.







Algorithm for the Euler Path Problem

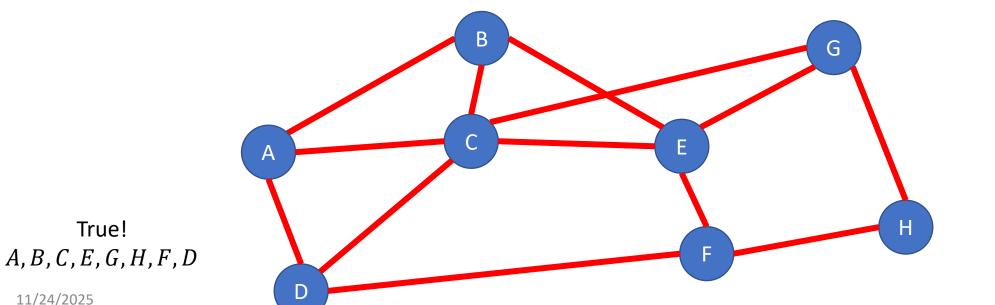
• Given an undirected graph G = (V, E), does there exist an Euler path for G?

Algorithm:

- Check if the graph is connected
- Check the degree of each node
- If the number of nodes with odd degree is 0 or 2, return true
- Otherwise return false
- Running time?

A Seemingly Similar Problem

- Hamiltonian Path:
 - A path that includes every node in the graph exactly once
- Hamiltonian Path Problem:
 - Given a graph G = (V, E), does that graph have a Hamiltonian Path?



Algorithms for the Hamiltonian Path Problem

• Option 1:

- Explore all possible simple paths through the graph
- Check to see if any of those are length V

Option 2:

- Write down every sequence of nodes
- Check to see if any of those are a path
- Both options are examples of an Exhaustive Search ("Brute Force")
 algorithm

Option 2: List all sequences, look for a path

• Running time:

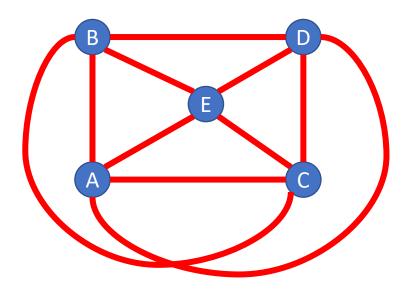
- G = (V, E)
- Number of permutations of V is |V|!

•
$$n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$$

- How does n! compare with 2^n ?
 - $n! \in \Omega(2^n)$
- Exponential running time!

Option 1: Explore all simple paths, check for one of length ${\it V}$

- Running time:
 - G = (V, E)
 - Number of paths
 - Pick a first node (|V| choices)
 - Pick a neighbor (up to |V| 1 choices)
 - Pick a neighbor (up to |V| 2 choices)
 - Repeat |V| 1 total times
 - Overall: |V|! paths
 - Exponential running time



16

Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)
 - The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)

• Examples:

- The set of all problems that can be solved by an algorithm with running time O(n)
 - Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
- The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 - Contains: everything above as well as comparison based sorting, Euler path
- The set of all problems that can be solved by an algorithm with running time O(n!)
 - Contains: everything we've seen in this class so far

Complexity Classes and Tractability

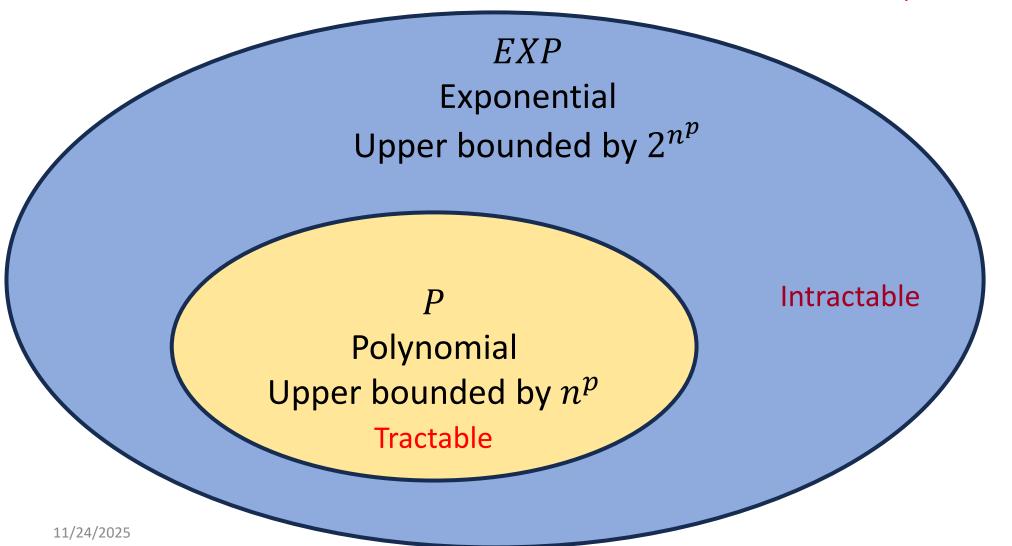
- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class *P*:
 - Stands for "Polynomial"
 - The set of problems which have an algorithm whose running time is $O(n^p)$ for some choice of $p \in \mathbb{R}$.
 - We say all problems belonging to P are "Tractable"
- Complexity Class *EXP*:
 - Stands for "Exponential"
 - The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 - We say all problems belonging to EXP P are "Intractable"
 - Disclaimer: Really it's all problems outside of P, and there are problems which do not belong to EXP, but we're not going to worry about those in this class

Important!

 $P \subset EXP$

EXP and P

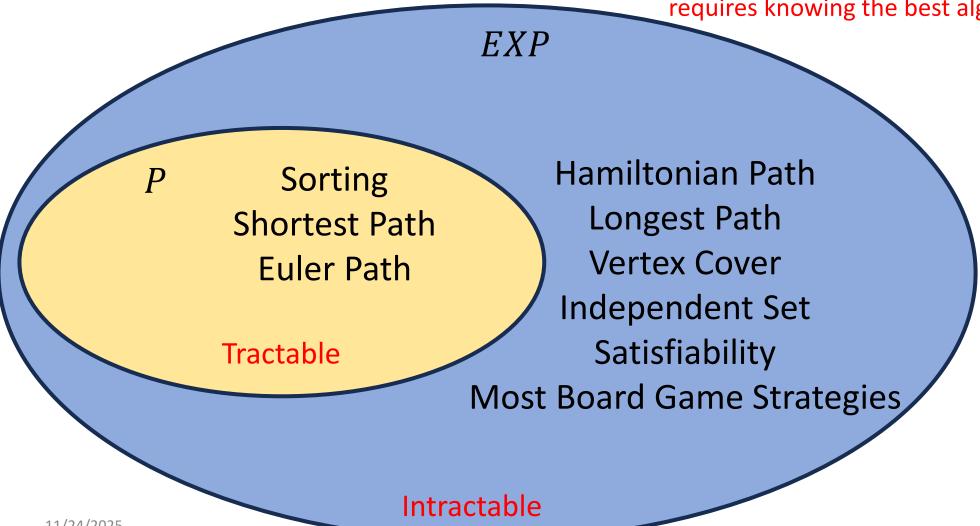
Every problem within P is also within EXP The intractable ones are the problems within EXP but NOT P



Important!

Members

Some of the problems we've listed in *EXP* could also be members of *P*. Since membership is determined by a problem's most efficient algorithm, knowing if a problem belongs to P requires knowing the best algorithm possible!



Studying Complexity and Tractability

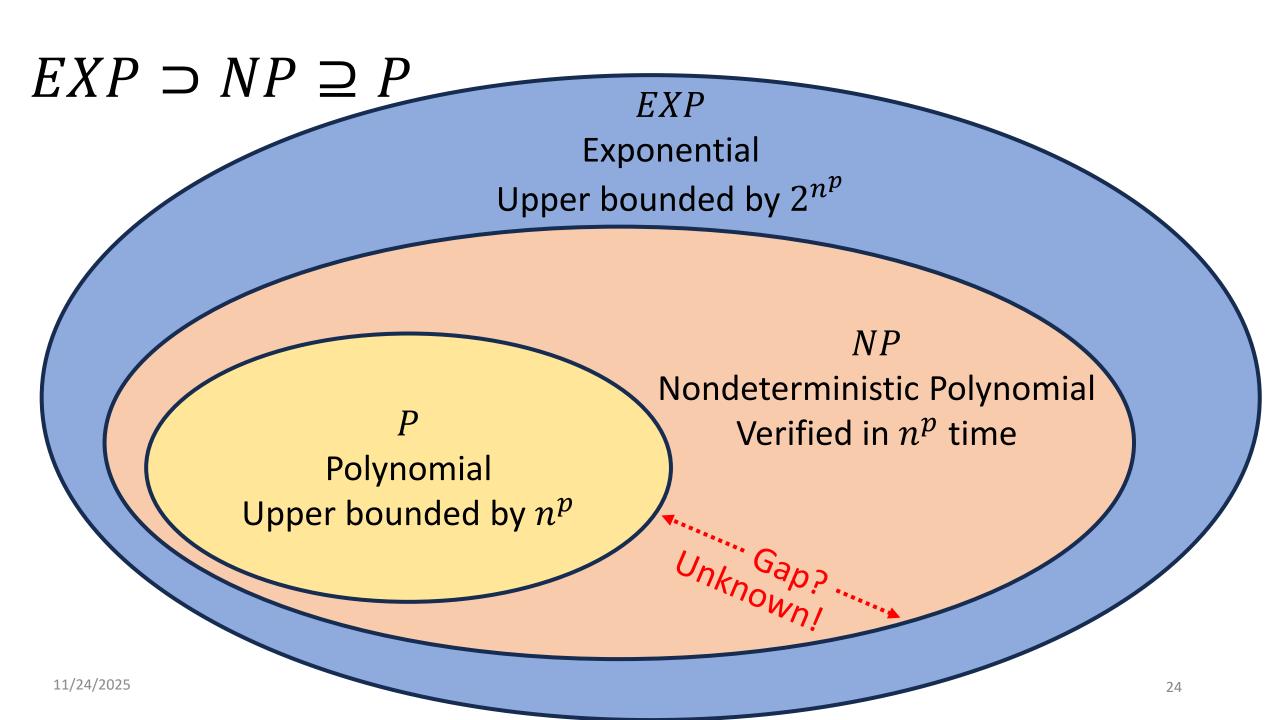
- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
 - Find an efficient algorithm if it exists
 - i.e. show it belongs to *P*
 - Prove that no efficient algorithm exists
 - i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 - If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 - It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in *EXP* seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
 - It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
 - It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It's easy to verify whether a given path is a Hamiltonian path

Class NP

- *NP*
 - The set of problems for which a candidate solution can be <u>verified</u> in polynomial time
 - Stands for "Non-deterministic Polynomial"
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search
- $P \subseteq NP$
 - Why?



Solving and Verifying Hamiltonian Path

- Give an algorithm to solve Hamiltonian Path
 - Input: G = (V, E)
 - Output: True if G has a Hamiltonian Path
 - Algorithm: Check whether each permutation of V is a path.
 - Running time: |V|!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
 - Input: G = (V, E) and a sequence of nodes
 - Output: True if that sequence of nodes is a Hamiltonian Path
 - Algorithm:
 - Check that each node appears in the sequence exactly once
 - Check that the sequence is a path
 - Running time: $O(V \cdot E)$, so it belongs to NP

$EXP \supset NP \supseteq P$

