CSE 332: Data Structures & Parallelism Lecture 24: Minimum Spanning Trees

Ruth Anderson Autumn 2025

Administrative

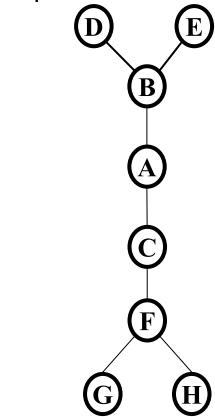
- EX09 On Fork Join, Due TONIGHT, Fri Nov 21
- EX10 Concurrency, Due Mon Nov 24
- EX11 MSTs, programming, coming soon!
- Resources!
 - Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed (Samarth) both in CSE1 006. A space to ask about course content and topics only as opposed to direct help with exercises.
 - 1-on-1 Meeting Requests Request a meeting with a staff member if you cannot make it to regularly scheduled office hours, or feel like you have an issue that requires a more in depth discussion.

Trees as graphs

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- connected

Example:



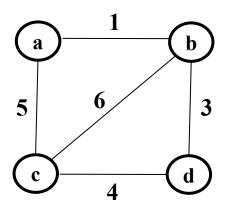
Minimum Spanning Trees

Given an undirected graph **G**=(**V**, **E**), find a graph **G'=(V, E')** such that:

- E' is a subset of E
- G' is connected
- G' has no cycles
- |E'| = |V| 1

 $\sum_{v} c_{uv}$ - $(u,v) \in E'$ is minimal

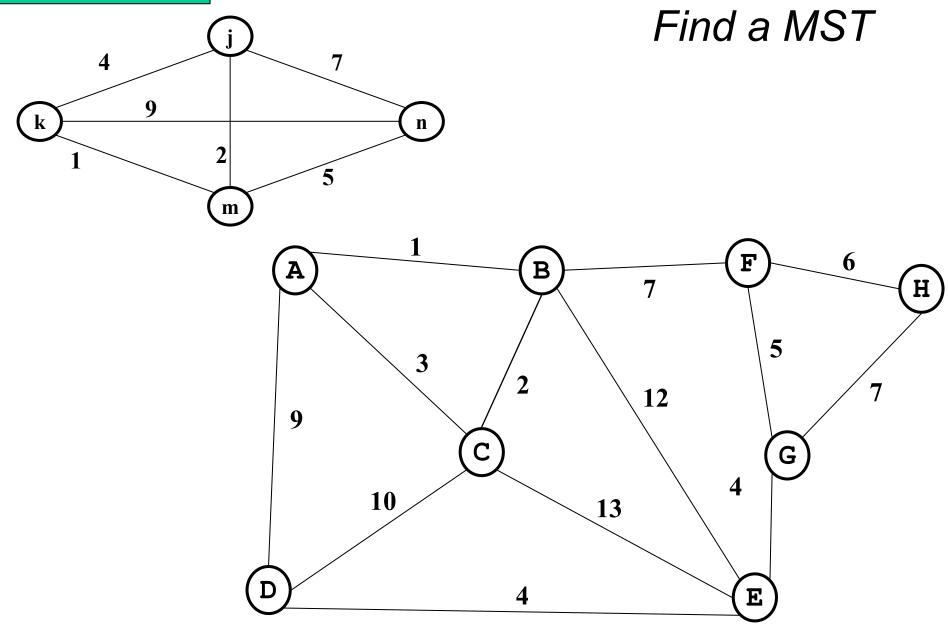
G' is a minimum spanning tree.



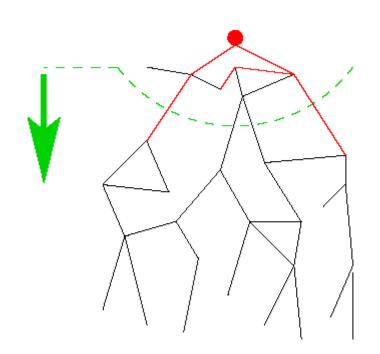
Applications:

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

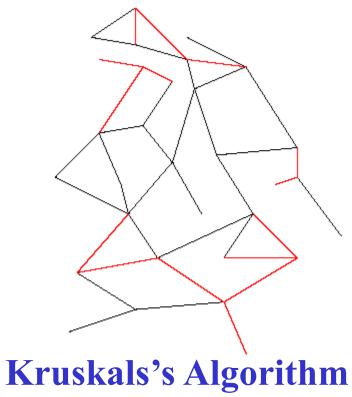
Student Activity



Two Different Approaches



Prim's Algorithm Almost identical to Dijkstra's

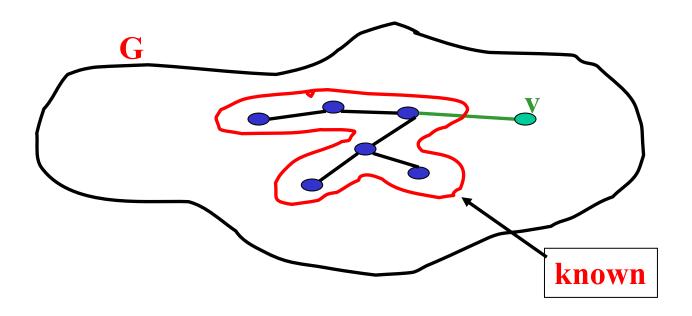


Completely different!

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A *node-based* greedy algorithm Builds MST by greedily adding nodes



Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = *distance to the source*.

Prim's pick the unknown vertex with smallest cost where
 cost = distance from this vertex to the known set (in other words,
 the cost of the smallest edge connecting this vertex to the known
 set)

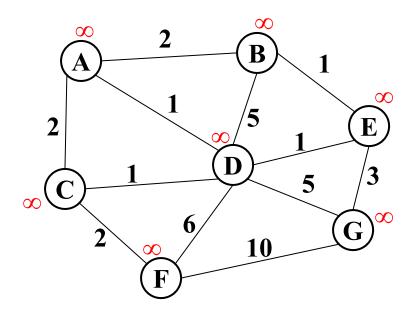
- Otherwise identical
- Compare to slides in Dijkstra lecture!

Prim's Algorithm for MST

- 1. For each node v, set $v.cost = \infty$ and v.known = false
- 2. Choose any node v. (this is like your "start" vertex in Dijkstra)
 - a) Mark v as known
 - b) For each edge (v,u) with weight w: set u.cost = w and u.prev = v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known and add (v, v.prev) to output (the MST)
 - c) For each edge (v,u) with weight w, where u is unknown:

```
if (w < u.cost) {
   u.cost = w;
   u.prev = v;
}</pre>
```

Example: Find MST using Prim's



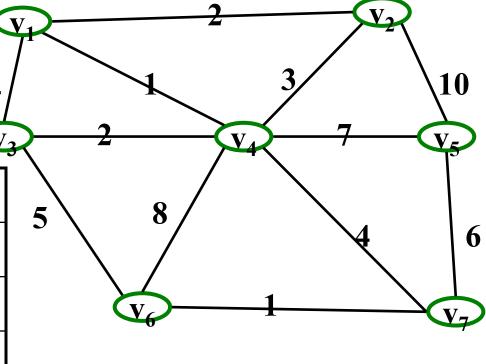
Order added to known set:

vertex	known?	cost	prev
Α			
В			
С			
D			
Е			
F			
G			

Start with V₁

Find MST using Prim's

V	Kwn	Distance	path
v1			
v2			
v3			
v4			
v5			
v6			
v7			



Order Declared Known:

 V_1

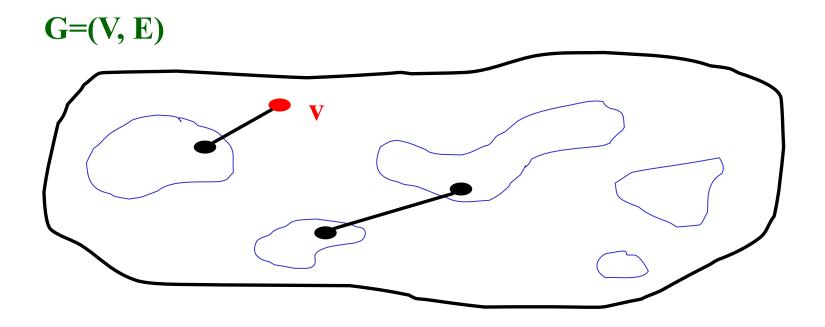
Total Cost:

Prim's Analysis

- Correctness
 - Intuitively similar to Dijkstra
- Run-time
 - Same as Dijkstra
 - O(|E|log |V|) using a priority queue

Kruskal's MST Algorithm

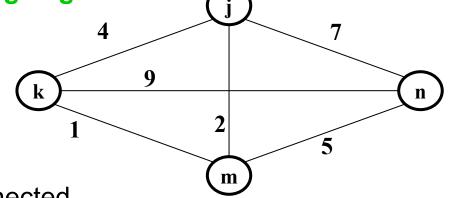
Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.



Kruskal's Algorithm for MST

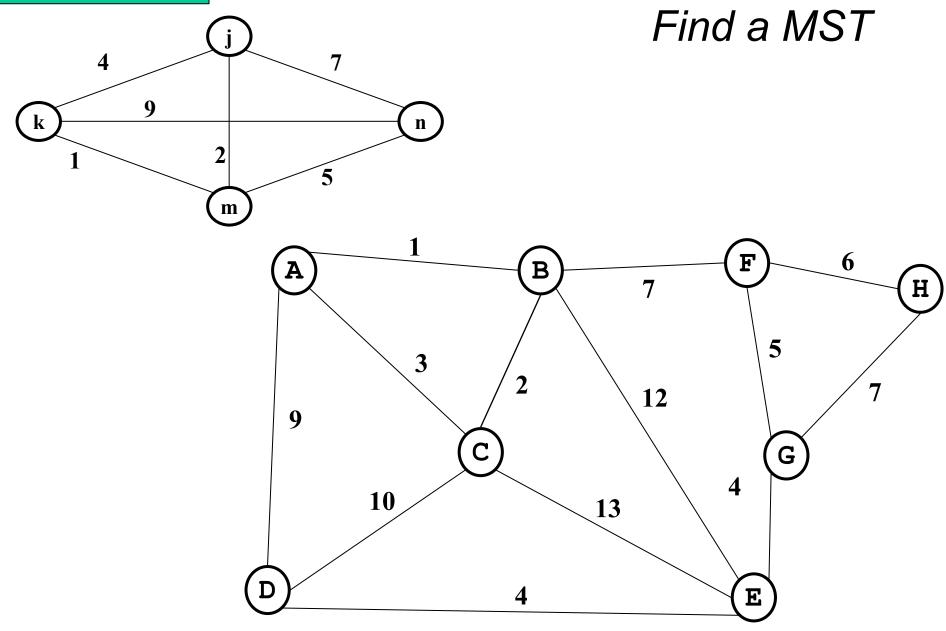
An edge-based greedy algorithm

Builds MST by greedily adding edges

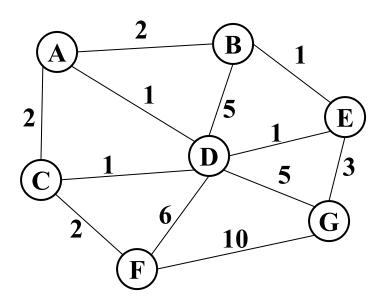


- Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- While all vertices are not connected
 - a. Pick the <u>lowest cost edge</u> (u,v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Student Activity



Example: Find MST using Kruskal's



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) take the union of two sets named x and y
 - Given sets: {3,5,7}, {4,2,8}, {9}, {1,6}
 - Union(5,1)

To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(x) return the name of the set containing x.

 - Find(1) returns 5
 - Find(4) returns 8
- We can do **Union** in constant time.
- We can get Find to be amortized constant time (worst case O(log n) for an individual Find operation).

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
  while (edgesAccepted < NUM_VERTICES - 1) {</pre>
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u); \leftarrow
    vset = s.find(v);
    if (uset != vset) {
      edgesAccepted++;
      s.unionSets(uset, vset); 👡
```