CSE 332: Data Structures & Parallelism Lecture 24: Minimum Spanning Trees

Ruth Anderson Autumn 2025

Administrative

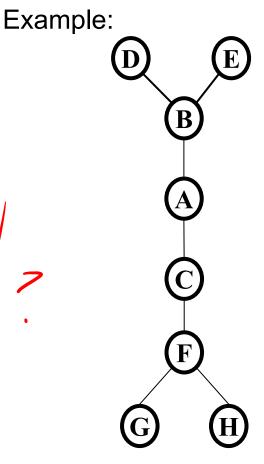
- EX09 On Fork Join, Due TONIGHT, Fri Nov 21
- EX10 Concurrency, Due Mon Nov 24
- EX11 MSTs, programming, coming soon!
- Resources!
 - Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed (Samarth) both in CSE1 006. A space to ask about course content and topics only as opposed to direct help with exercises.
 - 1-on-1 Meeting Requests Request a meeting with a staff member if you cannot make it to regularly scheduled office hours, or feel like you have an issue that requires a more in depth discussion.

Trees as graphs

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- connected

Q: How many edges will the be in a tree? Cinterns of V)



Minimum Spanning Trees

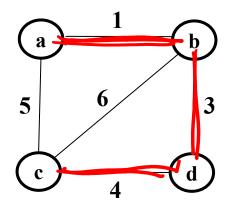
Given an undirected graph **G**=(**V**, **E**), find a graph **G'=(V, E')** such that:

- E' is a subset of E
- G' is connected
- G' has no cycles

$$-(|E'| = |V| - 1)$$

$$\sum_{(u,v)\in E'} \mathbf{c}_{uv}$$

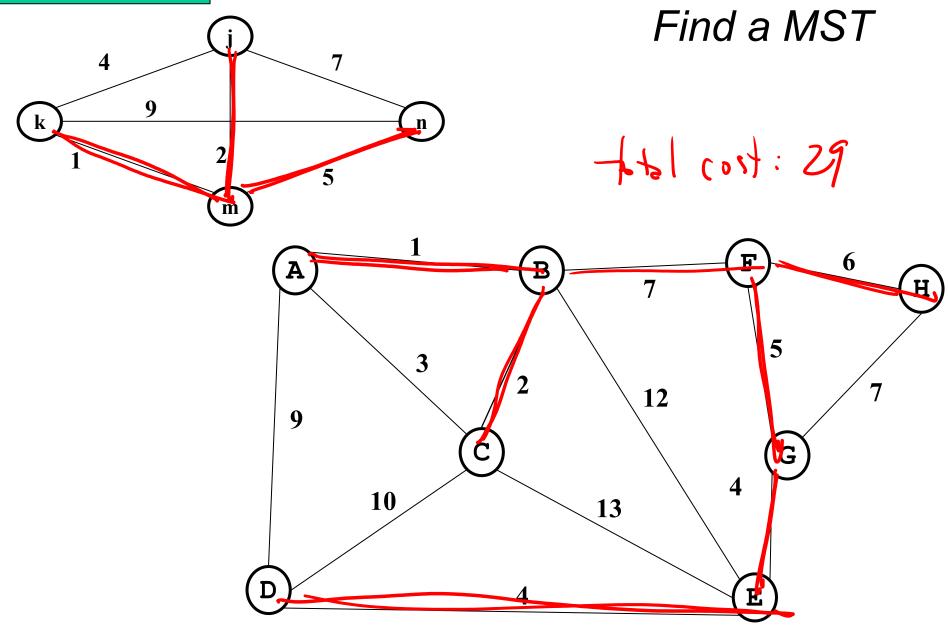
G' is a minimum spanning tree.



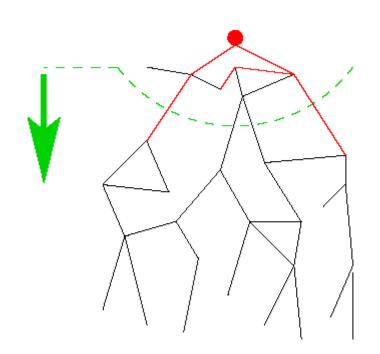
Applications:

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

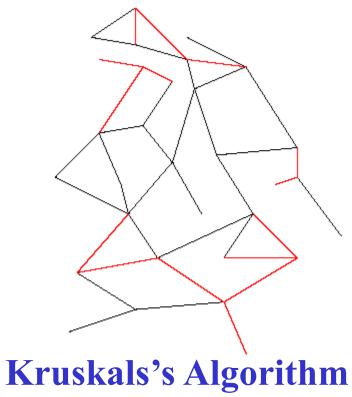
Student Activity



Two Different Approaches

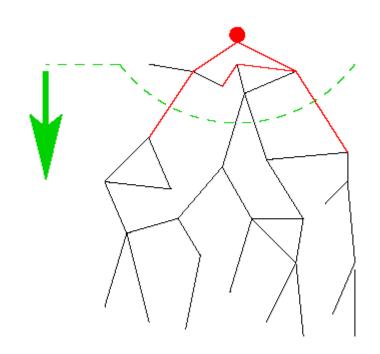


Prim's Algorithm Almost identical to Dijkstra's



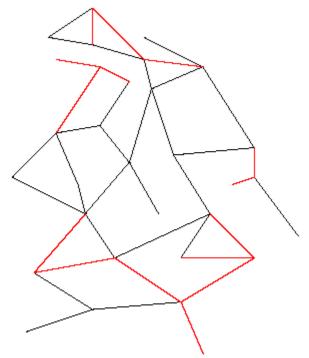
Completely different!

Two Different Approaches



Prim's Algorithm Almost identical to Dijkstra's

One node, grow greedily



Kruskals's Algorithm Completely different!

Forest of MSTs,

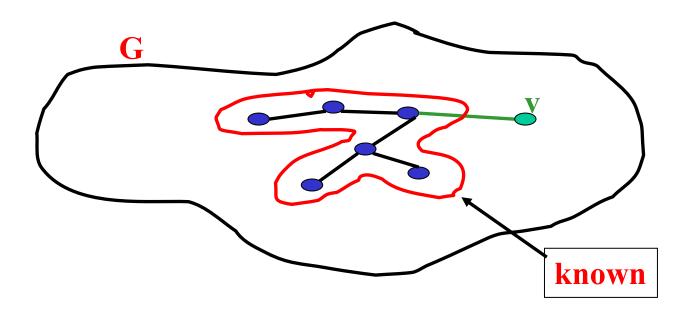
Union them together.

(Need a new data structure for this)

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."

A *node-based* greedy algorithm Builds MST by greedily adding nodes



Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = *distance to the source*.

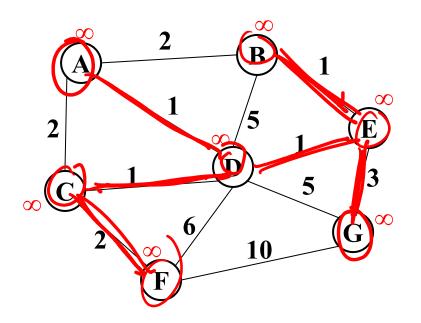
Prim's pick the unknown vertex with smallest cost where
 cost = distance from this vertex to the known set (in other words,
 the cost of the smallest edge connecting this vertex to the known
 set)

- Otherwise identical
- Compare to slides in Dijkstra lecture!

Prim's Algorithm for MST

- 1. For each node \mathbf{v} , set \mathbf{v} .cost = ∞ and \mathbf{v} .known = false
- 2. Choose any node v. (this is like your "start" vertex in Dijkstra)
 - a) Mark v as known
 - b) For each edge (v,u) with weight w: set u.cost = w and u.prev = v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known and add (v, v.prev) to output (the MST)
 - c) For each edge (v,u) with weight w, where u is unknown:

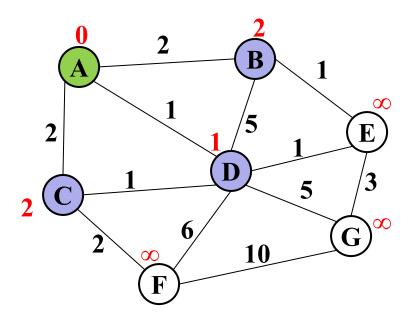
```
if (w < u.cost) {
   u.cost = w;
   u.prev = v;
}</pre>
```



Order added to known set:

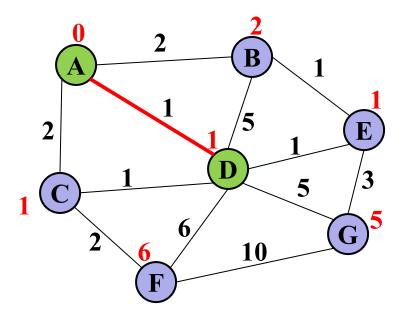
A, D, C, E, B, F, G

vertex	known?	cost	prev
Α		0	
В	1		臣
С	7	l	\mathcal{D}
D	T	(A
Е	T	l	
F	1	2	
G	T	3	(E)



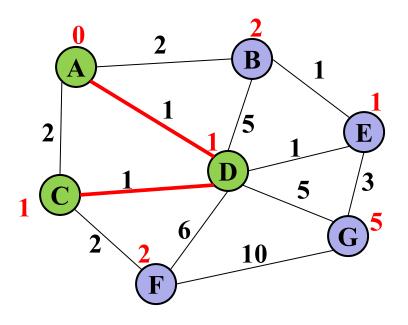
Order added to known set:

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С		2	Α
D		1	Α
Е		??	
F		??	
G		??	



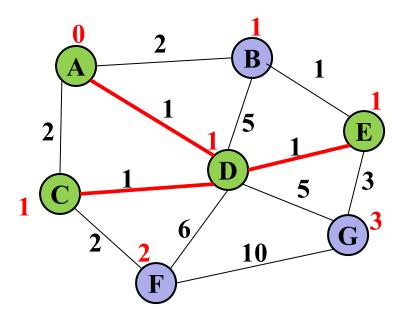
Order added to known set: A, D

vertex	known?	cost	prev
А	Υ	0	
В		2	Α
С		1	D
D	Υ	1	Α
Е		1	D
F		6	D
G		5	D



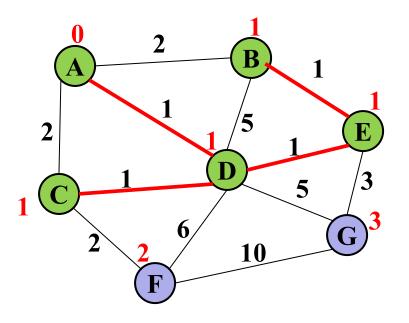
Order added to known set: A, D, C

vertex	known?	cost	prev
А	Y	0	
В		2	Α
С	Υ	1	D
D	Y	1	Α
Е		1	D
F		2	С
G		5	D



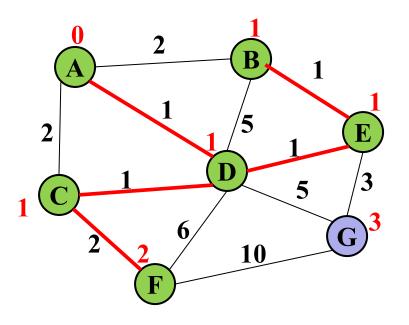
Order added to known set: A, D, C, E

vertex	known?	cost	prev
Α	Υ	0	
В		1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F		2	С
G		3	Е



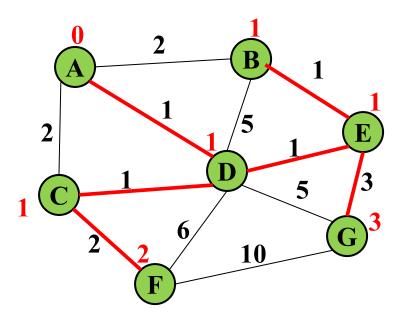
Order added to known set: A, D, C, E, B

vertex	known?	cost	prev
Α	Υ	0	
В	Y	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F		2	С
G		3	Е



Order added to known set: A, D, C, E, B, F

vertex	known?	cost	prev
Α	Υ	0	
В	Y	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F	Y	2	С
G		3	Е



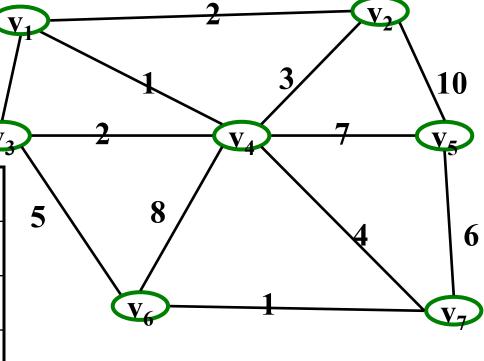
Order added to known set: A, D, C, E, B, F, G

vertex	known?	cost	prev
Α	Υ	0	
В	Y	1	Ш
С	Υ	1	D
D	Υ	1	Α
Е	Y	1	D
F	Y	2	С
G	Y	3	Е

Start with V₁

Find MST using Prim's

V	Kwn	Distance	path
v1			
v2			
v3			
v4			
v5			
v6			
v7			



Order Declared Known:

 V_1

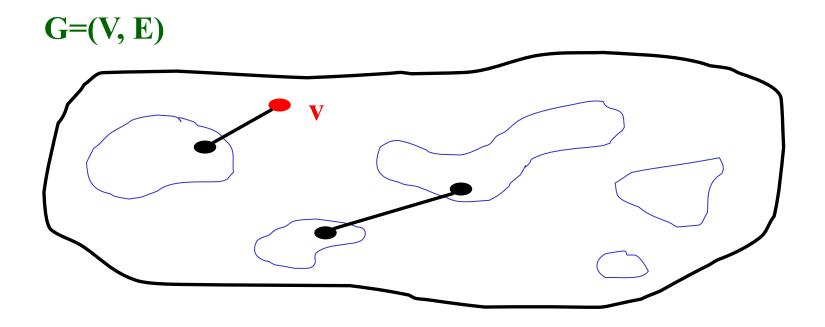
Total Cost:

Prim's Analysis

- Correctness
 - Intuitively similar to Dijkstra
- Run-time
 - Same as Dijkstra
 - O(|E|log |V|) using a priority queue

Kruskal's MST Algorithm

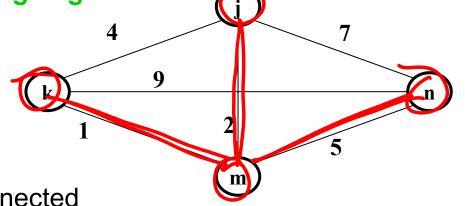
Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.



Kruskal's Algorithm for MST

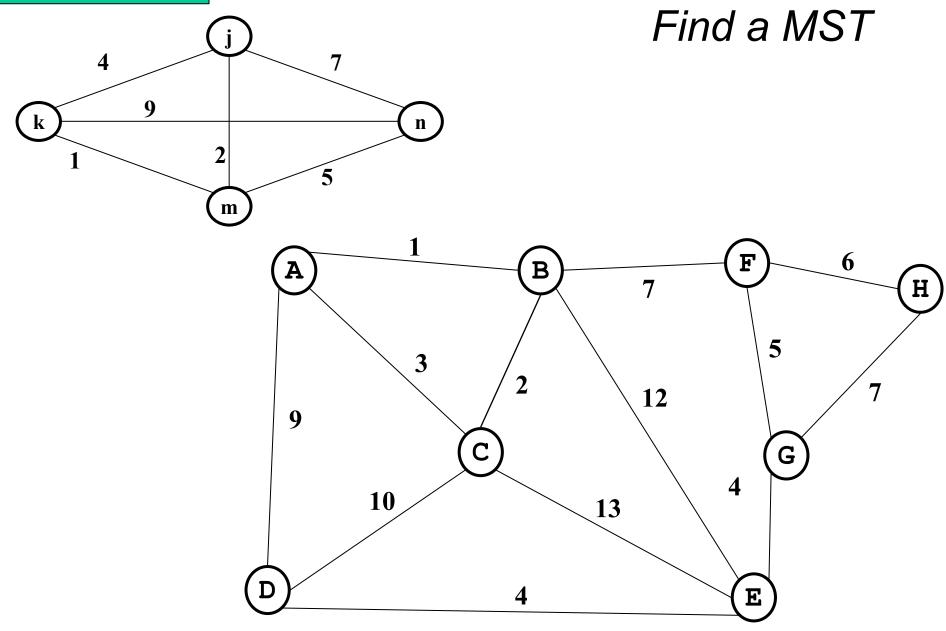
An edge-based greedy algorithm

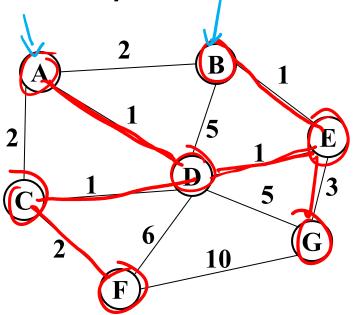
Builds MST by greedily adding edges



- Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While all vertices are not connected
 - a. Pick the lowest cost edge (u,v) and mark it
 - b. If **u** and **v** are not already connected, add (**u**,**v**) to the MST and mark **u** and **v** as connected to each other

Student Activity





Edges in sorted order:

1: <u>(A,D)</u>, (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

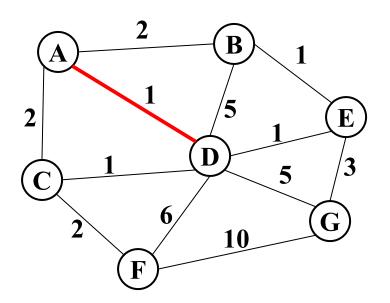
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

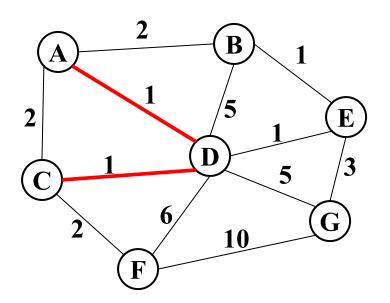
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

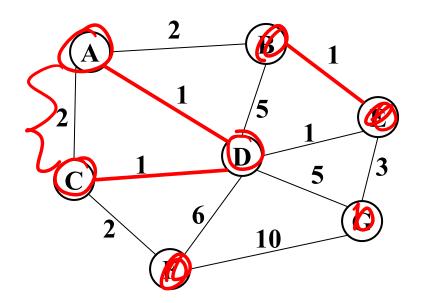
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

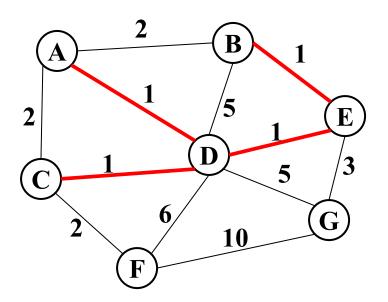
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

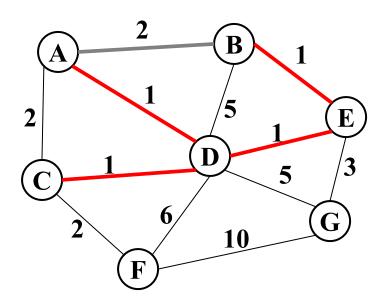
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

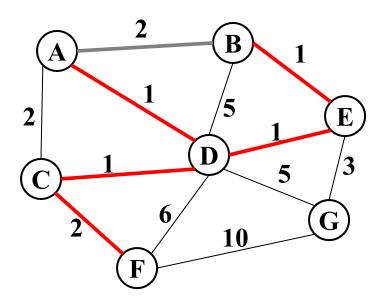
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

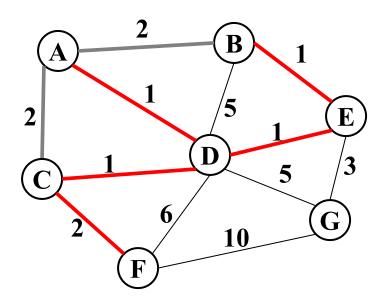
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

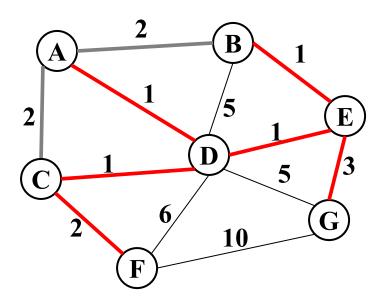
5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Aside: Union-Find aka Disjoint Set ADT

- Union(x,y) take the union of two sets named x and y
 - Given sets: (3,5,7), (4,2,8), (9) (1,6)
 - Union(5,1)

Result: $\{3, 5, 7, 1, 6\} / \{4, 2, 8\}, \{9\},$

To perform the union operation, we replace sets x and y by $(x \cup y)$

Find(x) – return the name of the set containing x.

- Given sets: $\{3, 5, 7, 1, 6\}$, $\{4, 2, 8\}$, $\{9\}$,
- Find(1) returns 5
- Find(4) returns 8

We can do **Union** in constant time.

We can get **Find** to be **amortized** constant time (worst case O(log n) for an individual **Find** operation).

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
  while (edgesAccepted < NUM_VERTICES - 1) {</pre>
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u); ←
    vset = s.find(v);
    if (uset != vset) {
      edgesAccepted++;
      s.unionSets(uset, vset); 👡
```

Kruskal's pseudo code

```
void Graph::kruskal(){
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                                 |E| heap ops
  while (edgesAccepted < NUM VERTICES - 1)</pre>
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u); 
                                            2|E| finds
    vset = s.find(v);
    if (uset != vset) {
      edgesAccepted++;
      s.unionSets(uset, vset);
```

Kruskal's pseudo code

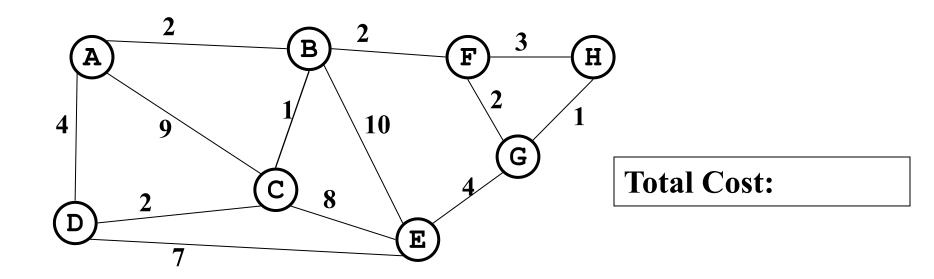
```
void Graph::kruskal(){
                                                                  Deletemin =
                                                                     log |E|
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                                           |E| heap ops
  while (edgesAccepted < NUM_VERTICES - 1) {
     e = smallest weight edge not deleted yet;
     // edge e = (u, v)
     uset = s.find(u); +
                                                    2|E| finds
                                                                  One for each
     vset = s.find(v);
                                                                  vertex in the
     if (uset != vset) {
                                                                  edge wc for
       edgesAccepted++;
                                                                 Find = log |V|
       s.unionSets(uset, vset);
                                                |V| unions
         |\mathbf{E}| \log |\mathbf{E}| + 2|\mathbf{E}| \log |\mathbf{V}| + |\mathbf{V}|
                                                               Union = O(1)
               O(|E|log|E|) = O(|E|log|V|)
              b/c \log |E| < \log |V|^2 = 2\log |V|
```

11/21/2025

On heap of

edges

Find MST using Kruskal's



- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

The inductive proof set-up

Let **F** (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: **F** is a subset of *one or more* MSTs for the graph (Therefore, once |**F**|=|**V**|-**1**, we have an MST.)

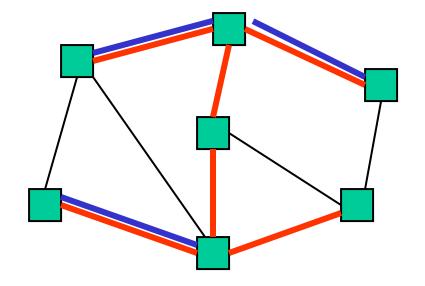
Proof: By induction on |F|

Base case: **|F|=0**: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th edge (call it **e**), there was some MST **T** such that $F-\{e\} \subseteq T$...

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: $F-\{e\} \subseteq T$:

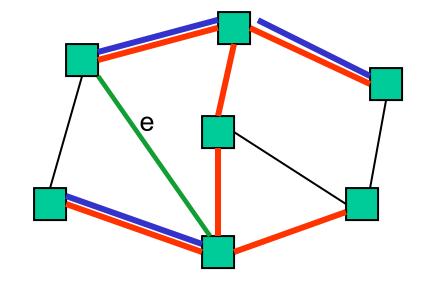


Two disjoint cases:

- If {e} ⊆ T: Then F ⊆ T and we're done
- Else e forms a cycle with some simple path (call it p) in T
 - Must be since T is a spanning tree

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T and e forms a cycle with p ⊆ T

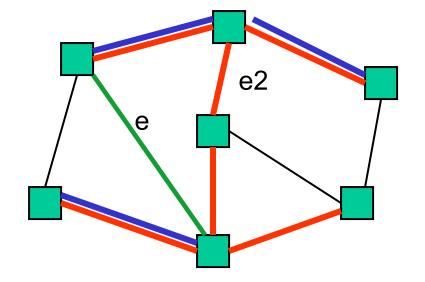


- There must be an edge e2 on p such that e2 is not in F
 - Else Kruskal would not have added e

Claim: e2.weight == e.weight

Claim: **F** is a subset of *one or* more MSTs for the graph

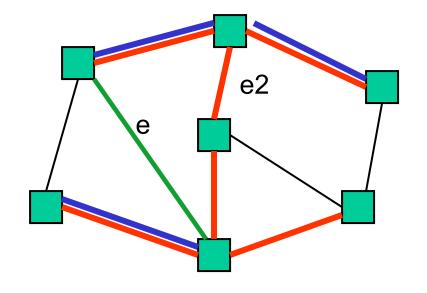
So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F



- Claim: e2.weight == e.weight
 - If e2.weight > e.weight, then T is not an MST because T-{e2}+{e} is a spanning tree with lower cost: contradiction
 - If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and F-{e} ⊆ T. But e2 is not in F: contradiction

Claim: **F** is a subset of *one or* more MSTs for the graph

So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T
e2 on p is not in F
e2.weight == e.weight



- Claim: T-{e2}+{e} is an MST
 - It's a spanning tree because p-{e2}+{e} connects the same nodes as p
 - It's minimal because its cost equals cost of T, an MST
- Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs
 Done.