
CSE 332: Data Structures & Parallelism

Lecture 20: Parallel Prefix & Pack

Ruth Anderson
Autumn 2025

Administrative

• EX07 – On Graphs, programming: Due Fri Nov 14
• EX08 – On Shortest Paths, Due Mon Nov 17
• EX09 – On Fork Join programming, Due Fri Nov 21
• Resources!

– Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed
(Samarth) both in CSE1 006. A space to ask about course content
and topics only as opposed to direct help with exercises.

– 1-on-1 Meeting Requests - Request a meeting with a staff member if
you cannot make it to regularly scheduled office hours, or feel like you
have an issue that requires a more in depth discussion.

11/12/2025 2

https://forms.gle/8fFJ9FSXaSZoPm9h9

Outline

Done:
– Simple ways to use parallelism for counting, summing, finding
– Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
– Parallel prefix:

• This “key trick” typically underlies surprising parallelization
• Enables other things like packs (aka filters)

311/12/2025

The prefix-sum problem
Given int[] input, produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]

Sequential can be a CSE122 exam problem:

4

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];

return output;
}

Does not seem parallelizable
– Work: O(n), Span: O(n)
– This algorithm is sequential, but a different algorithm has

Work: O(n), Span: O(log n)
11/12/2025

input
output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Parallel prefix-sum

• The parallel-prefix algorithm does two passes
– Each pass has O(n) work and O(log n) span
– So in total there is O(n) work and O(log n) span
– So like with array summing, parallelism is n/log n

• An exponential speedup

• First pass builds a tree bottom-up: the “up” pass

• Second pass traverses the tree top-down: the “down” pass

511/12/2025

11/12/2025 6

Local bragging

Historical note:
– Original algorithm due to R. Ladner and M. Fischer at UW in 1977
– Richard Ladner joined the UW faculty in 1971 and hasn’t left

711/12/2025

1968? 1973? recent

Parallel Prefix: The Up Pass

We build want to build a binary tree where
• Root has sum of the range [x,y)
• If a node has sum of [lo,hi) and hi>lo,

– Left child has sum of [lo,middle)
– Right child has sum of [middle,hi)
– A leaf has sum of [i,i+1), which is simply input[i]

It is critical that we actually create the tree as we will
need it for the down pass
• We do not need an actual linked structure
• We could use an array as we did with heaps

Analysis of first step: Work = Span =

811/12/2025

The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where
– Root has sum of input[0]..input[n-1]
– Each node has sum of input[lo]..input[hi-1]

• Build up from leaves; parent.sum=left.sum+right.sum
– A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by actually
building a binary tree with all the sums of ranges
– Tree built bottom-up in parallel
– Could be more clever; ex. Use an array as tree representation

like we did for heaps

Analysis of first step: O(n) work, O(log n) span

11/12/2025 9

Specifically…..

0 1 2 3 4 5 6 7

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

The (completely non-obvious) idea:
Do an initial pass to gather
information, enabling us to do a
second pass to get the answer

First we’ll gather
the ‘sum’ for each
recursive block

11/12/2025 10

0 1 2 3 4 5 6 7

First pass

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

For each node, get
the sum of all values
in its range;
propagate sum up
from leaves

Will work
like parallel
sum, but
recording
intermediate
information

11/12/2025 11

The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum

(as stored in part 1)
– At the leaf for array position i,

output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step:
Total for algorithm:
11/12/2025 12

The algorithm, part 2
2. Propagate ‘fromleft’ down:

– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum

(as stored in part 1)
– At the leaf for array position i,

output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: O(n) work, O(log n) span
Analysis of second step: O(n) work, O(log n) span
Total for algorithm: O(n) work, O(log n) span
11/12/2025 13

0 1 2 3 4 5 6 7

Second pass

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Using ‘sum’, get the
sum of everything to
the left of this range
(call it ‘fromleft’);
propagate down from
root

11/12/2025 14

11/12/2025 15

Sequential cut-off

Adding a sequential cut-off isn’t too bad:

• Step One: Propagating Up the sums:
– Have a leaf node just hold the sum of a range of values

instead of just one array value (Sequentially compute sum
for that range)

– The tree itself will be shallower

• Step Two: Propagating Down the fromLefts:
– Have leaf compute prefix sum sequentially over its [lo,hi):

output[lo] = fromLeft + input[lo];
for(i=lo+1; i < hi; i++)

output[i] = output[i-1] + input[i]

11/12/2025 16

Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,
prefix-sum illustrates a pattern that arises in many, many problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property
– This last one is perfect for an efficient parallel pack…
– Perfect for building on top of the “parallel prefix trick”

1711/12/2025

Pack (think “Filter”)
[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that f(element) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f: “is element > 10”

output [17, 11, 13, 19, 24]

Parallelizable?
– Determining whether an element belongs in the output is easy
– But determining where an element belongs in the output is

hard; seems to depend on previous results….

1811/12/2025

Parallel Pack = (Soln)
parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

19

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){

}

11/12/2025

In this example,
Filter =
element > 10

Parallel Pack =
parallel map + parallel prefix + parallel map

1. Parallel map to compute a bit-vector for true elements:
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector:
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output:
output [17, 11, 13, 19, 24]

20

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
if(bits[i]==1)
output[bitsum[i]-1] = input[i];

}

11/12/2025

In this example,
Filter =
element > 10

Pack comments

• First two steps can be combined into one pass
– Just using a different base case for the prefix sum
– No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
– Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span
– 2 or 3 passes, but 3 is a constant 

• Parallelized packs will help us parallelize quicksort. (see reading)

2111/12/2025

	CSE 332: Data Structures & Parallelism��Lecture 20: Parallel Prefix & Pack
	Administrative
	Outline
	The prefix-sum problem
	Parallel prefix-sum
	Slide Number 6
	Local bragging
	Parallel Prefix: The Up Pass
	The algorithm, part 1
	Slide Number 10
	First pass
	The algorithm, part 2
	The algorithm, part 2
	Second pass
	Slide Number 15
	Sequential cut-off
	Parallel prefix, generalized
	Pack (think “Filter”)
	Parallel Pack = (Soln)�parallel map + parallel prefix + parallel map
	Parallel Pack = �parallel map + parallel prefix + parallel map
	Pack comments

