
CSE 332: Data Structures & Parallelism

Lecture 19: Analysis of Fork-Join Parallel
Programs

Ruth Anderson
Autumn 2025

Administrative

• EX07 – On Graphs, programming: Due Fri Nov 14
• EX08 – On Shortest Paths, Due Mon Nov 17
• EX09 – On Fork Join programming, coming soon!

– After today you will have what you need to do the first
2 problems. On Wed you will have rest.

• Resources!
– Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed

(Samarth) both in CSE1 006. A space to ask about course
content and topics only as opposed to direct help with exercises.

– 1-on-1 Meeting Requests - Request a meeting with a staff member
if you cannot make it to regularly scheduled office hours, or feel
like you have an issue that requires a more in depth discussion.

11/10/2025 2

https://forms.gle/8fFJ9FSXaSZoPm9h9

Outline

Done:
• How to use fork and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law

11/10/2025 3

Fork Join Framework Version: (missing imports)

4

class SumTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task);

// invoke returns the value compute returns
} 11/10/2025

What else looks like this?
Saw summing an array went from O(n) sequential to O(log n) parallel
(assuming a lot of processors and very large n)

– Exponential speed-up in theory (n / log n grows exponentially)

+ + + + + + + +

+ + + +

+ +
+

• Anything that can use results from two halves and merge them
in O(1) time has the same property…

11/10/2025 5

Extending Parallel Sum
• We can tweak the ‘parallel sum’ algorithm to do all kinds of things;

just specify 2 parts (usually)
– Describe how to compute the result at the ‘cut-off’

(Sum: Iterate through sequentially and add them up)
– Describe how to merge results

(Sum: Just add ‘left’ and ‘right’ results)

+ + + + + + + +

+ + + +

+ +
+

11/10/2025 6

Examples
• Parallelization (for some algorithms)

– Describe how to compute result at the ‘cut-off’
– Describe how to merge results

• How would we do the following (assuming data is given as an array)?
1. Maximum or minimum element
2. Is there an element satisfying some property (e.g., is there a 17)?
3. Left-most element satisfying some property (e.g., first 17)
4. Smallest rectangle encompassing a number of points
5. Counts; for example, number of strings that start with a vowel
6. Are these elements in sorted order?

+ + + + + + + +
+ + + +

+ +
+

11/10/2025 7

Reductions

• This class of computations are called reductions
– We ‘reduce’ a large array of data to a single item
– Produce single answer from collection via an associative

operator
– Examples: max, count, leftmost, rightmost, sum, product, …

• Note: Recursive results don’t have to be single numbers or
strings. They can be arrays or objects with multiple fields.
– Example: create a Histogram of test results from a much

larger array of actual test results

• While many can be parallelized due to nice properties like
associativity of addition, some things are inherently sequential
– How we process arr[i] may depend entirely on the result

of processing arr[i-1]
11/10/2025 8

Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently to
create a new collection of the same size
– No combining results
– For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}

11/10/2025 9

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps with load
balancing to create many small tasks
– Maybe not for vector-add but for more compute-intensive maps
– The forking is O(log n) whereas theoretically other approaches

to vector-add is O(1)

class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){
if(hi – lo < SEQUENTIAL_CUTOFF) {
for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
POOL.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}
11/10/2025 10

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

– By far the two most important and common patterns
• Two more-advanced patterns in next lecture

– Learn to recognize when an algorithm can be written in
terms of maps and reductions

– Use maps and reductions to describe (parallel) algorithms

– Programming them becomes “trivial” with a little practice
• Exactly like sequential for-loops seem second-nature

11/10/2025 11

Map vs reduce in ForkJoin framework

• In our examples:
• Reduce:

– Parallel-sum extended RecursiveTask
– Result was returned from compute()

• Map:
– Class extended was RecursiveAction
– Nothing returned from compute()
– In the above code, the ‘answer’ array was passed in as a

parameter
• Doesn’t have to be this way

– Map can use RecursiveTask to, say, return an array
– Reduce could use RecursiveAction; depending on what you’re

passing back via RecursiveTask, could store it as a class
variable and access it via ‘left’ or ‘right’ when done

11/10/2025 12

Digression: MapReduce on clusters
• You may have heard of Google’s “map/reduce”

– Or the open-source version Hadoop

• Idea: Perform maps/reduces on data using many machines
– The system takes care of distributing the data and managing

fault tolerance
– You just write code to map one element and reduce

elements to a combined result

• Separates how to do recursive divide-and-conquer from what
computation to perform
– Old idea in higher-order functional programming transferred

to large-scale distributed computing
– Complementary approach to declarative queries for

databases
11/10/2025 13

Trees

• Maps and reductions work just fine on balanced trees
– Divide-and-conquer each child rather than array sub-ranges
– Correct for unbalanced trees, but won’t get much speed-up

• Example: minimum element in an unsorted but balanced binary
tree in O(log n) time given enough processors

• How to do the sequential cut-off?
– Store number-of-descendants at each node (easy to maintain)
– Or could approximate it with, e.g., AVL-tree height

11/10/2025 14

Linked lists
• Can you parallelize maps or reduces over linked lists?

– Example: Increment all elements of a linked list
– Example: Sum all elements of a linked list
– Parallelism still beneficial for expensive per-element operations

b c d e f

front back

• Once again, data structures matter!

• For parallelism, balanced trees generally better than lists so that
we can get to all the data exponentially faster O(log n) vs. O(n)
– Trees have the same flexibility as lists compared to arrays

(in terms of say inserting an item in the middle of the list)
11/10/2025 15

Analyzing algorithms

• How to measure efficiency?
– Want asymptotic bounds
– Want to analyze the algorithm without regard to a specific

number of processors
– The key “magic” of the ForkJoin Framework is getting

expected run-time performance asymptotically optimal for the
available number of processors

• So we can analyze algorithms assuming this guarantee

11/10/2025 16

Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking
– Cumulative work that all processors must complete

• Span: How long it would take infinity processors = T∞
– The hypothetical ideal for parallelization
– This is the longest “dependence chain” in the computation
– Example: O(log n) for summing an array

• Notice in this example having > n/2 processors is no
additional help

– Also called “critical path length” or “computational depth”

11/10/2025 17

The DAG (Directed Acyclic Graph)
• A program execution using fork and join can be seen as a DAG
• [A DAG is a graph that is directed (edges have direction (arrows)), and those arrows

do not create a cycle (ability to trace a path that starts and ends at the same node).]

– Nodes: Pieces of work
– Edges: Source must finish before destination starts

• A fork “ends a node” and makes
two outgoing edges
• New thread
• Continuation of current thread

• A join “ends a node” and makes
a node with two incoming edges
• Node just ended
• Last node of thread joined on

11/10/2025 18

Our simple examples
• fork and join are very flexible, but divide-and-conquer maps

and reductions use them in a very basic way:
– A tree on top of an upside-down tree

base cases

divide

combine
results

11/10/2025 19

Our simple examples, in more detail
Our fork and join frequently look like this:

base cases

divide

combine
results

In this context, the span (T∞) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
•Example: O(log n) for summing an array; we halve the data down to our
cut-off, then add back together; O(log n) steps, O(1) time for each
•Also called “critical path length” or “computational depth”

11/10/2025 20

More interesting DAGs?

• The DAGs are not always this simple

• Example:
– Suppose combining two results might be expensive enough

that we want to parallelize each one
– Then each node in the inverted tree on the previous slide

would itself expand into another set of nodes for that parallel
computation

11/10/2025 21

Connecting to performance

• Recall: TP = running time if there are P processors available

• Work = T1 = sum of run-time of all nodes in the DAG
– That lonely processor does everything
– Any topological sort is a legal execution
– O(n) for simple maps and reductions

• Span = T∞ = sum of run-time of all nodes on the most-expensive
path in the DAG
– Note: costs are on the nodes not the edges
– Our infinite army can do everything that is ready to be done,

but still has to wait for earlier results
– O(log n) for simple maps and reductions

11/10/2025 22

Definitions
A couple more terms:

• Speed-up on P processors: T1 / TP

• If speed-up is P as we vary P, we call it perfect linear speed-up
– Perfect linear speed-up means doubling P halves running time
– Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T ∞

– At some point, adding processors won’t help
– What that point is depends on the span

Parallel algorithms is about decreasing span without
increasing work too much

11/10/2025 23

Optimal TP: Thanks ForkJoin library!
• So we know T1 and T ∞ but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat
– T1 / P why not?
– T∞ why not?

• So an asymptotically optimal execution would be:

TP = O((T1 / P) + T∞)
– First term dominates for small P, second for large P

• The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal!
– Expected time because it flips coins when scheduling
– How? For an advanced course (few need to know)
– Guarantee requires a few assumptions about your code…

11/10/2025 24

Division of responsibility

• Our job as ForkJoin Framework users:
– Pick a good algorithm, write a program
– When run, program creates a DAG of things to do
– Make all the nodes a small-ish and approximately equal

amount of work

• The framework-writer’s job:
– Assign work to available processors to avoid idling

• Let framework-user ignore all scheduling issues
– Keep constant factors low
– Give the expected-time optimal guarantee assuming

framework-user did his/her job

TP = O((T1 / P) + T∞)
11/10/2025 25

Examples

TP = O((T1 / P) + T∞)

• In the algorithms seen so far (e.g., sum an array):
– T1 = O(n)
– T∞= O(log n)

– So expect (ignoring overheads): TP = O(n/P + log n)

• Suppose instead:
– T1 = O(n2)
– T∞= O(n)

– So expect (ignoring overheads): TP = O(n2/P + n)

11/10/2025 26

And now for the bad news…

• So far: talked about a parallel program in terms of work and span
• In practice, it’s common that your program has:

a) parts that parallelize well:
– Such as maps/reduces over arrays and trees

b) …and parts that don’t parallelize at all:
– Such as reading a linked list, getting input, or just doing

computations where each step needs the results of previous
step

• These unparallelized parts can turn out to be a big bottleneck,
which brings us to Amdahl’s Law …

11/10/2025 27

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):
T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S

11/10/2025 28

Amdahl’s Law Example
Suppose: T1 = S + (1-S) = 1 (aka total program execution time)

T1 = 1/3 + 2/3 = 1
T1 = 33 sec + 67 sec = 100 sec

Time on P processors: TP = S + (1-S)/P

So: TP = 33 sec + (67 sec)/P
T3 = 33 sec + (67 sec)/3 =

11/10/2025 29

Why such bad news?

T1 / TP = 1 / (S + (1-S)/P) T1 / T∞ = 1 / S

• Suppose 33% of a program is sequential
– Then a billion processors won’t give a speedup over 3!!!

• No matter how many processors you use, your speedup is
bounded by the sequential portion of the program.

11/10/2025 30

The future and Amdahl’s Law

Speedup: T1 / TP = 1 / (S + (1-S)/P)
Max Parallelism: T1 / T∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1
– What portion of the program must be parallelizable to get

100x speedup?

11/10/2025 31

The future and Amdahl’s Law

Speedup: T1 / TP = 1 / (S + (1-S)/P)
Max Parallelism: T1 / T∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1
– What portion of the program must be parallelizable to get

100x speedup?

For 256 processors to get at least 100x speedup, we need
100 ≤ 1 / (S + (1-S)/256)

Which means S ≤ .0061 (i.e., 99.4% must be parallelizable)

11/10/2025 32

Plots you have to see

1. Assume 256 processors
– x-axis: sequential portion S, ranging from .01 to .25
– y-axis: speedup T1 / TP (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)
– x-axis: number of processors P, ranging from 2 to 32
– y-axis: speedup T1 / TP (will go up as P increases)

Do this as a homework problem!
– Chance to use a spreadsheet or other graphing program
– Compare against your intuition
– A picture is worth 1000 words, especially if you made it

11/10/2025 33

All is not lost
Amdahl’s Law is a bummer!

– Unparallelized parts become a bottleneck very quickly
– But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
– Some things that seem entirely sequential turn out to be parallelizable
– Eg. How can we parallelize the following?

• Take an array of numbers, return the ‘running sum’ array:

– At a glance, not sure; we’ll explore this shortly
• We can also change the problem we’re solving or do new things

– Example: Video games use tons of parallel processors
• They are not rendering 10-year-old graphics faster
• They are rendering richer environments and more beautiful (terrible?)

monsters

input

output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

11/10/2025 34

Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the
semiconductor industry
– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
– Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems

11/10/2025 35

	CSE 332: Data Structures & Parallelism��Lecture 19: Analysis of Fork-Join Parallel Programs
	Administrative
	Outline
	Fork Join Framework Version: (missing imports)
	What else looks like this?
	Extending Parallel Sum
	Examples
	Reductions
	Even easier: Maps (Data Parallelism)
	Maps in ForkJoin Framework
	Maps and reductions
	Map vs reduce in ForkJoin framework
	Digression: MapReduce on clusters
	Trees
	Linked lists
	Analyzing algorithms
	Work and Span
	The DAG (Directed Acyclic Graph)
	Our simple examples
	Our simple examples, in more detail
	More interesting DAGs?
	Connecting to performance
	Definitions
	Optimal TP: Thanks ForkJoin library!
	Division of responsibility
	Examples
	And now for the bad news…
	Amdahl’s Law (mostly bad news)
	Amdahl’s Law Example
	Why such bad news?
	The future and Amdahl’s Law
	The future and Amdahl’s Law
	Plots you have to see
	All is not lost
	Moore and Amdahl

