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Administrative

• EX07 – On Graphs, programming: Due Fri Nov 14
• EX08 – On Shortest Paths, Due Mon Nov 17
• EX09 – On Fork Join programming, coming soon!

– After today you will have what you need to do the first 
2 problems. On Wed you will have rest.

• Resources!
– Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed 

(Samarth) both in CSE1 006. A space to ask about course 
content and topics only as opposed to direct help with exercises. 

– 1-on-1 Meeting Requests - Request a meeting with a staff member 
if you cannot make it to regularly scheduled office hours, or feel 
like you have an issue that requires a more in depth discussion. 
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https://forms.gle/8fFJ9FSXaSZoPm9h9


Outline

Done:
• How to use fork and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law
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Fork Join Framework Version: (missing imports)

4

class SumTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length) 
return POOL.invoke(task);

// invoke returns the value compute returns
} 11/10/2025



What else looks like this?
Saw summing an array went from O(n) sequential to O(log n) parallel 
(assuming a lot of processors and very large n)

– Exponential speed-up in theory (n / log n grows exponentially)

+ + + + + + + +

+ + + +

+ +
+

• Anything that can use results from two halves and merge them 
in O(1) time has the same property…
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Extending Parallel Sum
• We can tweak the ‘parallel sum’ algorithm to do all kinds of things; 

just specify 2 parts (usually)
– Describe how to compute the result at the ‘cut-off’ 

(Sum: Iterate through sequentially and add them up)
– Describe how to merge results 

(Sum: Just add ‘left’ and ‘right’ results)

+ + + + + + + +

+ + + +

+ +
+
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Examples
• Parallelization (for some algorithms)

– Describe how to compute result at the ‘cut-off’
– Describe how to merge results

• How would we do the following (assuming data is given as an array)?
1. Maximum or minimum element
2. Is there an element satisfying some property (e.g., is there a 17)?
3. Left-most element satisfying some property (e.g., first 17)
4. Smallest rectangle encompassing a number of points
5. Counts; for example, number of strings that start with a vowel
6. Are these elements in sorted order?

+ + + + + + + +
+ + + +

+ +
+
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Reductions

• This class of computations are called reductions
– We ‘reduce’ a large array of data to a single item
– Produce single answer from collection via an associative 

operator
– Examples: max, count, leftmost, rightmost, sum, product, …

• Note: Recursive results don’t have to be single numbers or 
strings.  They can be arrays or objects with multiple fields.
– Example: create a Histogram of test results from a much 

larger array of actual test results

• While many can be parallelized due to nice properties like 
associativity of addition, some things are inherently sequential
– How we process arr[i] may depend entirely on the result 

of processing arr[i-1]
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Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently to 
create a new collection of the same size
– No combining results
– For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}
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Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps with load 
balancing to create many small tasks
– Maybe not for vector-add but for more compute-intensive maps
– The forking is O(log n) whereas theoretically other approaches 

to vector-add is O(1)

class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;   
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){
if(hi – lo < SEQUENTIAL_CUTOFF) {
for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);   
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
POOL.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}
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Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

– By far the two most important and common patterns
• Two more-advanced patterns in next lecture

– Learn to recognize when an algorithm can be written in 
terms of maps and reductions

– Use maps and reductions to describe (parallel) algorithms

– Programming them becomes “trivial” with a little practice
• Exactly like sequential for-loops seem second-nature
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Map vs reduce in ForkJoin framework

• In our examples:
• Reduce:

– Parallel-sum extended RecursiveTask
– Result was returned from compute()

• Map:
– Class extended was RecursiveAction
– Nothing returned from compute()
– In the above code, the ‘answer’ array was passed in as a 

parameter
• Doesn’t have to be this way

– Map can use RecursiveTask to, say, return an array
– Reduce could use RecursiveAction; depending on what you’re 

passing back via RecursiveTask, could store it as a class 
variable and access it via ‘left’ or ‘right’ when done
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Digression:  MapReduce on clusters
• You may have heard of Google’s “map/reduce”

– Or the open-source version Hadoop

• Idea: Perform maps/reduces on data using many machines
– The system takes care of distributing the data and managing 

fault tolerance
– You just write code to map one element and reduce 

elements to a combined result

• Separates how to do recursive divide-and-conquer from what 
computation to perform
– Old idea in higher-order functional programming transferred 

to large-scale distributed computing
– Complementary approach to declarative queries for 

databases
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Trees

• Maps and reductions work just fine on balanced trees
– Divide-and-conquer each child rather than array sub-ranges
– Correct for unbalanced trees, but won’t get much speed-up

• Example: minimum element in an unsorted but balanced binary 
tree in O(log n) time given enough processors

• How to do the sequential cut-off?
– Store number-of-descendants at each node (easy to maintain)
– Or could approximate it with, e.g., AVL-tree height
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Linked lists
• Can you parallelize maps or reduces over linked lists?

– Example: Increment all elements of a linked list
– Example: Sum all elements of a linked list
– Parallelism still beneficial for expensive per-element operations

b c d e f

front back

• Once again, data structures matter!

• For parallelism, balanced trees generally better than lists so that 
we can get to all the data exponentially faster O(log n) vs. O(n)
– Trees have the same flexibility as lists compared to arrays

(in terms of say inserting an item in the middle of the list)
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Analyzing algorithms

• How to measure efficiency?
– Want asymptotic bounds
– Want to analyze the algorithm without regard to a specific 

number of processors
– The key “magic” of the ForkJoin Framework is getting 

expected run-time performance asymptotically optimal for the 
available number of processors

• So we can analyze algorithms assuming this guarantee
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Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking
– Cumulative work that all processors must complete

• Span: How long it would take infinity processors = T∞
– The hypothetical ideal for parallelization
– This is the longest “dependence chain” in the computation
– Example: O(log n) for summing an array 

• Notice in this example having > n/2 processors is no 
additional help

– Also called “critical path length” or “computational depth”
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The DAG (Directed Acyclic Graph)
• A program execution using fork and join can be seen as a DAG
• [A DAG is a graph that is directed (edges have direction (arrows)), and those arrows 

do not create a cycle (ability to trace a path that starts and ends at the same node).]

– Nodes: Pieces of work 
– Edges: Source must finish before destination starts

• A fork “ends a node” and makes 
two outgoing edges
• New thread
• Continuation of current thread

• A join “ends a node” and makes 
a node with two incoming edges
• Node just ended
• Last node of thread joined on
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Our simple examples
• fork and join are very flexible, but divide-and-conquer maps 

and reductions use them in a very basic way:
– A tree on top of an upside-down tree

base cases

divide 

combine 
results 
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Our simple examples, in more detail
Our fork and join frequently look like this:

base cases

divide 

combine 
results 

In this context, the span (T∞) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
•Example: O(log n) for summing an array; we halve the data down to our 
cut-off, then add back together; O(log n) steps, O(1) time for each
•Also called “critical path length” or “computational depth”
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More interesting DAGs?

• The DAGs are not always this simple

• Example: 
– Suppose combining two results might be expensive enough 

that we want to parallelize each one
– Then each node in the inverted tree on the previous slide 

would itself expand into another set of nodes for that parallel 
computation
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Connecting to performance

• Recall: TP = running time if there are P processors available

• Work = T1 = sum of run-time of all nodes in the DAG
– That lonely processor does everything
– Any topological sort is a legal execution
– O(n) for simple maps and reductions

• Span = T∞ = sum of run-time of all nodes on the most-expensive 
path in the DAG
– Note: costs are on the nodes not the edges
– Our infinite army can do everything that is ready to be done, 

but still has to wait for earlier results
– O(log n) for simple maps and reductions
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Definitions
A couple more terms:

• Speed-up on P processors: T1 / TP 

• If speed-up is P as we vary P, we call it perfect linear speed-up
– Perfect linear speed-up means doubling P halves running time
– Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T ∞

– At some point, adding processors won’t help
– What that point is depends on the span

Parallel algorithms is about decreasing span without 
increasing work too much
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Optimal TP: Thanks ForkJoin library!
• So we know T1 and T ∞ but we want TP (e.g., P=4)

• Ignoring memory-hierarchy issues (caching), TP can’t beat
– T1 / P why not?
– T∞ why not?

• So an asymptotically optimal execution would be:

TP  = O((T1 / P) + T∞)
– First term dominates for small P, second for large P

• The ForkJoin Framework gives an expected-time guarantee of 
asymptotically optimal! 
– Expected time because it flips coins when scheduling
– How? For an advanced course (few need to know)
– Guarantee requires a few assumptions about your code…
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Division of responsibility

• Our job as ForkJoin Framework users:
– Pick a good algorithm, write a program
– When run, program creates a DAG of things to do
– Make all the nodes a small-ish and approximately equal 

amount of work

• The framework-writer’s job:
– Assign work to available processors to avoid idling

• Let framework-user ignore all scheduling issues
– Keep constant factors low
– Give the expected-time optimal guarantee assuming 

framework-user did his/her job

TP  = O((T1 / P) + T∞)
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Examples

TP  = O((T1 / P) + T∞)

• In the algorithms seen so far (e.g., sum an array):
– T1 = O(n)
– T∞= O(log n)

– So expect (ignoring overheads): TP  = O(n/P + log n)

• Suppose instead:
– T1 = O(n2)
– T∞= O(n)

– So expect (ignoring overheads): TP  = O(n2/P + n)
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And now for the bad news…

• So far: talked about a parallel program in terms of work and span
• In practice, it’s common that your program has:

a) parts that parallelize well:
– Such as maps/reduces over arrays and trees 

b) …and parts that don’t parallelize at all:
– Such as reading a linked list, getting input, or just doing 

computations where each step needs the results of previous 
step

• These unparallelized parts can turn out to be a big bottleneck, 
which brings us to Amdahl’s Law …
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Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):
T1 / TP = 1 / (S + (1-S)/P) 

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S
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Amdahl’s Law Example
Suppose: T1 = S + (1-S) = 1  (aka total program execution time)

T1 = 1/3 + 2/3 = 1
T1 = 33 sec + 67 sec = 100 sec

Time on P processors: TP = S + (1-S)/P 

So: TP = 33 sec + (67 sec)/P
T3 = 33 sec + (67 sec)/3 = 
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Why such bad news?

T1 / TP = 1 / (S + (1-S)/P) T1 / T∞ = 1 / S

• Suppose 33% of a program is sequential
– Then a billion processors won’t give a speedup over 3!!!

• No matter how many processors you use, your speedup is 
bounded by the sequential portion of the program.
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The future and Amdahl’s Law

Speedup: T1 / TP = 1 / (S + (1-S)/P) 
Max Parallelism: T1 / T∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish 
years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you 

get 256 processors instead of 1
– What portion of the program must be parallelizable to get 

100x speedup?
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The future and Amdahl’s Law

Speedup: T1 / TP = 1 / (S + (1-S)/P) 
Max Parallelism: T1 / T∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish
years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you 

get 256 processors instead of 1
– What portion of the program must be parallelizable to get 

100x speedup?

For 256 processors to get at least 100x speedup, we need
100 ≤ 1 / (S + (1-S)/256)

Which means S ≤ .0061  (i.e., 99.4% must be parallelizable) 
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Plots you have to see

1. Assume 256 processors
– x-axis: sequential portion S, ranging from .01 to .25
– y-axis: speedup T1 / TP (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)
– x-axis: number of processors P, ranging from 2 to 32
– y-axis: speedup T1 / TP (will go up as P increases)

Do this as a homework problem!
– Chance to use a spreadsheet or other graphing program  
– Compare against your intuition
– A picture is worth 1000 words, especially if you made it
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All is not lost
Amdahl’s Law is a bummer!

– Unparallelized parts become a bottleneck very quickly
– But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
– Some things that seem entirely sequential turn out to be parallelizable
– Eg. How can we parallelize the following?

• Take an array of numbers, return the ‘running sum’ array:

– At a glance, not sure; we’ll explore this shortly
• We can also change the problem we’re solving or do new things

– Example: Video games use tons of parallel processors  
• They are not rendering 10-year-old graphics faster
• They are rendering richer environments and more beautiful (terrible?) 

monsters

input

output

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76
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Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the 
semiconductor industry
– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
– Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems
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