CSE 332: Data Structures & Parallelism

Lecture 18: Introduction to Multithreading &
Fork-Join Parallelism

Ruth Anderson
Autumn 2025

Administrative

« EXO06 — On Sorting: Due TONIGHT, Fri Nov 7

« EXO07 — On Graphs, programming: Due Fri Nov 14
« EXO08 — On Shortest Paths, Due Mon Nov 17
 Midterm Exam grades, solution, Ed post ally posted

« Resources!

— Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed
(Samarth) both in CSE1 006. A space to ask about course
content and topics only as opposed to direct help with exercises.

— 1-on-1 Meeting Requests - Request a meeting with a staff member
if you cannot make it to regularly scheduled office hours, or feel
like you have an issue that requires a more in depth discussion.

11/07/2025

https://forms.gle/8fFJ9FSXaSZoPm9h9

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities
— Programming: Divide work among threads of execution and
coordinate (synchronize) among them
— Algorithms: How can parallel activity provide speed-up
(more throughput: work done per unit time)

— Data structures: May need to support concurrent access
(multiple threads operating on data at the same time)

11/07/2025

A simplified view of history

Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code

— Especially in common languages like Java and C
— So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially
faster at running sequential programs

— About twice as fast every couple years

But nobody knows how to continue this
— Increasing clock rate generates too much heat
— Relative cost of memory access is too high
— But we can keep making “wires exponentially smaller”

H (11

(Moore’s “Law”), so put multiple processors on the same
chip (“multicore”)

11/07/2025 4

What to do with multiple processors?

%HV hon,
. Ngeﬁ:er ébwwill likely have 4 processors

— Wait a few years and it will be 8, 16, 32, ...
— The chip companies have decided to do this (not a “law”)

* What can you do with them?
—ﬁm multiple totally different programs at the same time
 Already do that? Yes, but with time-slicing
— Do multiple things at once in one program
* QOur focus — more difficult

» Requires rethinking everything from asymptotic
complexity to how to implement data-structure operations

11/07/2025 5

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential
— Many programmers confuse these concepts

Parallelism: Concurrency:
Use extra resources to Correctly and efficiently manage
solve a problem faster access to shared resources
work req\uests
resources resource

There is some connection:
— Common to use threads for both

— |If parallel computations need access to shared resources,
then the concurrency needs to be managed

11/07/2025 6

An analogy

CS1 idea: A program is like a recipe for a cook
— One cook who does one thing at a time! (Sequential)

Parallelism: (Let’s get the job done faster!)
— Have lots of potatoes to slice?
— Hire helpers, hand out potatoes and knives
— But too many chefs and you spend all your time coordinating

Concurrency: (\We need to manage a shared resource)
— Lots of cooks making different things, but only 4 stove burners

— Want to allow access to all 4 burners, but not cause spills or
incorrect burner settings

11/07/2025 7

Parallelism Example

Parallelism: Use extra computational resources to solve a problem
faster (increasing throughput via simultaneous execution)

Pseudocode (not Java yet) for array sum:
— No such ‘FORALL’ construct, but we’ll see something similar

— Bad style, but with 4 processors may get roughly 4x speedup
int sum(int[] arr) {

res = new int[4];

len = arr.length;
——J>FORALL(i=O; i< 4; i++) { //parallel iterations
res[i] = sumRange (arr,i*len/4, (i+l)*len/4);

}

return res[0O]+res[l]+res[2]+res([3];
}
int sumRange(int[] arr, int lo, int hi) {
result = 0;
for(j=lo; j < hi; j++)
result += arr[j];
return result;

}

11/07/2025 8

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)
Ex: Multiple threads accessing a hash-table, but not getting in each others’ ways

Pseudocode (not Java) for a shared chaining hashtable
— Essential correctness issue is preventing bad interleavings

— Essential performance issue not preventing good concurrency
* One ‘solution’ to preventing bad inter-leavings is to do it all sequentially

class Hashtable<K,V> {

void insert (K key, V value) {

int bucket = ..;
;jprevent -other-inserts/lookups in table[bucket]
do the insertion
——>re-enable access to table[bucket]

}

V lookup (K key) {
(similar to insert, but can allow concurrent
lookups to same bucket)

}

11/07/2025 9

Shared memory with Threads

The model we will assume is shared memory with explicit threads

Old story: A running program has

— One program counter (current statement executing)

— One call stack (with each stack frame holding local variables)

— Objects in the heap created by memory allocation (i.e., new)
 (nothing to do with data structure called a heap)

— Static fields

b
New story:
— A set of threads, each with its own program counter & call stack
» No access to another thread’s local variables
— Threads can (implicitly) share static fields / objects

« To communicate, write values to some shared location that

another thread reads from
11/07/2025 10

Old Story : one call stack, one pc

. . Heap for all objects
«Call stack with local variables and static fields

*pc determines current statement
*local variables are numbers/null /
or heap references

/

=0x..

11

New Story: Shared memory with Threads

Heap for all objects
and static fields, shared
by all threads

Threads, each with own unshared
call stack and “program counter”

12

Aside: Other models

We will focus on shared memory, but you should know several
other models exist and have their own advantages

« Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages

— Cooks working in separate kitchens, mail around ingredients

- Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph
— Cooks wait to be handed results of previous steps

« Data parallelism: Have primitives for things like “apply function
to every element of an array in parallel”

11/07/2025 13

Our Needs

To write a shared-memory parallel program, need new primitives
from a programming language or library

« Ways to create and run multiple things at once

— Let’s call these things threads

« Ways for threads to share memory
— Often just have threads with references to the same objects

« Ways for threads to coordinate (a.k.a. synchronize)

— For now, a way for one thread to wait for another to finish
— Other primitives when we study concurrency

11/07/2025 14

Java basics

First learn some basics built into Java vi4 java. lang.Thread7

— Then a better library for parallel prggramming —

To get a new thread running:
1. Define a subclass_ C of java.lang.Thread, overriding Eun)

2. Create an object of class C «
3. Call that object’s starfmethod W)
« start sets off a new thread, using run as its “main’

What if we instead called the run method of C?
— This would just be a normal method call, in the current thread

Let's see how to share memory and coordinate via an example...

11/07/2025 15

Parallelism idea

 Example: Sum elements of a large array
* l|dea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: This is an inferior first approach

e S

ansQ ansl ans2 ans3
T

ans

— Create 4 thread objects, each given a portion of the work
— Call start () on each thread object to actually run it in parallel
— Wait for threads to finish using join ()

— Add together their 4 answers for the final result

11/07/2025 16

First attempt, part 1

class SumThread extends java.lang.Thread ({

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

fghmThread(int[] a, int 1, int h) {
lo=1l; hi=h; arr=a;
J

—Eﬁblic void run() //override must have this type
for(int i=lo; i1 < hi; i++)
ans += arr[i];
} —

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads
11/07/2025 17

First attempt, continued (wrong)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do

int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. } // override

}

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*1len/4);

or(int i=0; i < 4; i++) // combine results
ans += ts[i] .ans;

return ans;

11/07/2025 18

Second attempt (still wrong)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. } // override

}

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l) *len/4);
ts[i] .start(); // start not run

}
for (int i=0; i < 4; i++) // combine results

ans += ts[i] .ans;
return ans;

11/07/2025 19

Third attempt (correct in spirit)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. } // override

}

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l) *len/4);
ts[1i]. start()

A==)
for(lnt ::ﬂﬁ:EZzEQ i++) { // combine results

ts[i] .join(); // wait for helper to finish!
ans += ts[i].ans;

}

return ans;

11/07/2025 20

Join: QOur “wait” method for Threads

The Thread class defines various methods you could not
implement on your own
— For example: start, which calls run in a new thread

 The join method is valuable for coordinating this kind of
computation

— Caller blocks until/unless the receiver is done executing
(meaning the call to run finishes)

— Else we would have a race condition on ts[i] . ans

» This style of parallel programming is called “fork/join”

« Java detail: code has 1 compile error because join may throw
java.lang.InterruptedException

— In basic parallel code, should be fine to catch-and-exit

11/07/2025 21

Shared memory?

» Fork-join programs (thankfully) do not require much focus on
sharing memory among threads

« Butin languages like Java, there is memory being shared.
In our example:

- lo, hi, arr fields written by “main” thread, read by helper
thread
— ans field written by helper thread, read by “main” thread

 When using shared memory, you must avoid race conditions
— While studying parallelism, we’ll stick with join

— With concurrency, we will learn other ways to synchronize

11/07/2025 22

How Many Threads do we want?

Our current code uses 4 threads:
1. What if we get a new computer with 16 processors?
— Re-write our code to divide by number of processors?

2. What if the operating system decides “you only get 4
processors right now”?

— Hmm...we could get different numbers of processors each
time we run our program...

3. What if our current way of dividing the work between threads
leads to threads that take wildly varying amounts of time?

— [Example: Operation is “determine if an integer is prime”,
which will take much longer for parts of the array that
contain large values, leading to a load imbalance.

11/07/2025 23

Answer: Create many threads!

The counterintuitive (?) solution to all these problems is to cut up our
problem into many pieces, far more than the number of

processors
— But this will require changing our algorithm...
— And for constant-factor reasons, abandoning Java’s threads

EEEEEEEEERRREEEEEERENEENEERRENEEEEERENNNNEERRNNEED
T E— —

ans0\\\\\\\\\Efﬁézlha/ﬁi:::://////,//ansN

ns
1. Forward-portable: Lots of helpers each doing a small piece
2. Processors available: Hand out “work chunks” as you go
3. Load imbalance: No problem if slow thread scheduled early enough
« Variation probably small anyway if pieces of work are small
But, how many threads? Pick a moderate chunk size, say 1000 iterations.

11/07/2025 24

What is the running time for this code?

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arcr;
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. }

}

int sum(int[] arr) {
int len = arr.length;

int ans = 0;
int numThreads = : / 1000;
SumThread|[] ts = new read |[numThreads] ;
for(int 1=0; i < numThreads; 1i

ts[i] = new SumThread (

arr,i*len/numThreads, (i+l) *1len/numThreads) ;
ts[i] .start () ;
}
or (int i=0; i < numThreads; i++) {
ts[i] .join();
ans += ts[i] .ans;
}

eturn ans;

11/07/2025 25

Naive algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr) {

arr.length / 1000;
new SumThread[numThreads];

Int numThreads
SumThread|[] ts

}

Then the “combining of results” part of the code will have
arr.length / 1000 additions

« Linear in size of array (with constant factor 1/1000)
» Previous we had only 4 pieces (©(1) to combine)

* |In the extreme, suppose we create one thread per element — If
we use a for loop to combine the results, we have N iterations

* In either case we get a ©(N) algorithm with the combining of

results as the bottleneck....
11/07/2025 26

A better idea: Divide and Conquer!

1) Divide problem into pieces recursively:
— Start with full problem at root
— Halve and make new thread until size is at some cutoff
2) Combine answers in pairs as we return from recursion (see diagram)

‘-H‘-H‘-H‘-H‘-H‘-HLH‘-H‘-H‘-H‘-H‘-H‘-H‘-H‘-HLH
N2 N2 NV NV R WA WA W

~ ~, ~, \/
~ ~
_ .,

This will start small, and ‘grow’ threads to fit the problem
This is straightforward to implement using divide-and-conquer

— Parallelism for the recursive calls
11/07/2025 27

Remember Mergesort?

8 1 2|94 5|3 |1]6

Divide «— B
82 9 4 S 316
Divide \ / N

Divid 8 2 9 4 S 3 16
TN " <N N
1 element 8 2 9 4 5 3 1 6
Merge 2\"/ \/ \30/5 >/

Merge \/ >5A ‘6/

Merge \/

1 23 45 6 89

28

Code looks something like this (still using Java Threads)

class SumThread extends java.lang.Thread {

int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ // override

if(hi - lo < SEQUENTIAL CUTOFF)

for(int i=lo; i < hi; i++)
ans += arr[i];
else {

SumThread left = new SumThread (arr,lo, (hi+lo)/2) ;
égumThread right= new SumThread(arr, (hi+lo)/2,hi);

eft.start (W
right.start¥) ;
left.join() ; don’t move this up a line - why?

right.join() ; —

= left.ans + right.ans;
G ght,
}}
int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);

t.run() ;
return t.ans;

} 11/07/2025

29

Divide-and-conquer really works

 The key is divide-and-conquer parallelizes the result-combining

— If you have enough processors, total time is height of the tree:
O(1og n) (optimal, exponentially faster than sequential O(n))

— Next lecture: study reality of P << n processors

« Will write all our parallel algorithms in this style
— But using a special library engineered for this style
» Takes care of scheduling the computation well
— Often relies on operations being associative (like +)

SEENNEEEENNEERENNEERENNEEEENNEERENEEREAEREEEEE
TV T
+\+/+ +\+/+
-

11/07/2025 30

Thread: sum range [0,10)

Recursive problem decomposition

Thread: sum range [0,5) Examp]e: summing

Thread: sum range [0,2) an array with 10 elements.
Thread: sum range [0,1) (return arr[0]) (too small to actually want to
Thread: sum range [1,2) (return arr[1]) use parallelism)
add results from two helper threads: sum arr[0-1]

Thread: sum range [2,5) The algorithm produces the
Thread: sum range [2,3) (return arr[2]) following tree of recursion,
Thread: sum range [3,5) where the range [i})

Thread: sum range [3,4) (return arr[3]) includes i and excludes j:

Thread: sum range [4,5) (return arr[4])
add results from two helper threads: sum arr[3-4]
add results from two helper threads: sum arr[2-4]
add results from two helper threads: sum arr[0-4]
Thread: sum range [5,10)
Thread: sum range [5,7)
Thread: sum range [5,6) (return arr[5])
Thread: sum range [6,7) (return arr[6])
add results from two helper threads: sum arr[5-6]
Thread: sum range [7,10)
Thread: sum range [7,8) (return arr[7])
Thread: sum range [8,10)
Thread: sum range [8,9) (return arr[8])
Thread: sum range [9,10) (return arr[9])
add results from two helper threads: sum arr[8-9]
add results from two helper threads: sum arr[7-9]
add results from two helper threads: sum arr[5-9]
add results from two helper threads: sum arr[0-9]

31

Being realistic

* Intheory, you can divide down to single elements, do all your
result-combining in parallel and get optimal speedup

— Total time O(n / numProcessors + log n)

* In practice, creating all those threads and communicating
swamps the savings, so do two things to help:

1. Use a sequential cutoff, typically around 500-1000

« Eliminates almost all the recursive thread creation
(bottom levels of tree)

« Exactly like quicksort switching to insertion sort for small
subproblems, but more important here
2 \%7

not create two recursive threads:; create one thread and
do the other piece of work “yourself”

« Cuts the number of threads created by another 2x

\
11/07/2025 32

Half the threads! order of last 4 lines

|s critical — why?

// wasteful: don’t // better: do!!
SumThread left .. SumThread left
SumThread right SumThread right

left.start() ; left.start(); Note: run ISa
right .start () : ight . run () ; normal.funct/on call!
execution won't
[r continue until we
are done with run
left.join() ; left.join() ;
right.join() ; // no right.join needed
ans=left.ans+right.ans; ans=left.ans+right.ans;

» If a language had built-in support for fork-join parallelism, |
would expect this hand-optimization to be unnecessary

« But the library we are using expects you to do it yourself
— And the difference is surprisingly substantial
« Again, no difference in theory

33

Creating Fewer threads pictorially

2 new threads at each step

(and only leaf threads ,, 2 / % 3

do much work)

Total = st 4/ & 5 A6 \"’"7

15 threads, ., 8_ %9 w0 }bm fﬁ+12/+“’iﬂ3 -sb’-14/+\gu15

N
AAAAAAAAAAAAAAAA
JESEESEEEEEEEEEEEENEENENEEENEEEEENEEEEEEEEEENEE

1 new thread

1
at each step st 2 T 1
Total = bt 3/"'\1{ 2 st /+\Q\1

8 threads +
D T3 6 *“\2 sl _— ﬂ@f sh+8/ \,\1

N / N
bbby bbb
SENENNEEEEEENNEEEEENNNEEEEENNEEEENNEEERENNEEE

11/07/2025 34

That library, finally

« Even with all this care, Java’s threads are too “heavyweight”
— Constant factors, especially space overhead
— Creating 20,000 Java threads just a bad idea ®

 The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism

— In the Java 8 standard libraries

— Section will focus on pragmatics/logistics

— Similar libraries available for other languages
» C/C++: Cilk (inventors), Intel’'s Thread Building Blocks
» C#: Task Parallel Library

— Library’s implementation is a fascinating but advanced topic

11/07/2025 35

Different terms, same basic idea

To use the ForkJoin Framework:
« A little standard set-up code (e.g., create a ForkJoinPool)

Java Threads: ramework:
Don’t subclass Thread Do subclass RecursiveTask<v>

Don’t override run ~Do override compute i
Do not use an ans field Do return a v from compute
Don't call start
Don't just call join- Do call 4oin {which returns answer)
Don’t call run to hand-optimize Do call compute to hand-optimize
Don’t have a topmost call to run Do create a pool and call invoke

11/07/2025 36

Fork Join Framework Version: (missing imports)

class SumTask extends RecursiveTask<Integer> ({
int lo; int hi; int[] arr; // fields to know what to do
SumTask (int[] a, int 1, int h) { ..
protected Integer compute() {// return answer

if(hi - lo < SEQUENTIAL CUTOFF) {

}
}

}

int ans = 0; // local var, not a field
for(int i=lo; i1 < hi; i++)

ans += arr[i];
return ans;
else {
SumTask left = new SumTask (arr,lo, (hi+lo)/2);
SumTask right= new SumTask (arr, (hi+lo)/2,hi);
left.foxrk(); // fork a thread and calls compute
int rightAns = right.compute ‘3 ;//call compute directly
int leftAns = left.g oin(); // get result from left
return leftAns + rig S;

static final ForkJoinPool POOL = new ForkJoinPool () ;
int sum(int[] arr) {

SumTask task = new SumTask (arr,0,arr.length)
return POOL.invoke (task) ;

// invoke returns the value compute returns

11/07/2025 37

Getting good results in practice

Sequential threshold

— Library documentation recommends doing approximately
100-5000 basic operations in each “piece” of your algorithm

Library needs to “warm up”

— May see slow results before the Java virtual machine re-
optimizes the library internals

— Put your computations in a loop to see the “long-term benefit”

Wait until your computer has more processors ©

— Seriously, overhead may dominate at 4 processors, but
parallel programming is likely to become much more important

Beware memory-hierarchy issues
— Won't focus on this, but often crucial for parallel performance

11/07/2025 38

	CSE 332: Data Structures & Parallelism��Lecture 18: Introduction to Multithreading & Fork-Join Parallelism
	Administrative
	Changing a major assumption
	A simplified view of history
	What to do with multiple processors?
	Parallelism vs. Concurrency
	An analogy
	Parallelism Example
	Concurrency Example
	Shared memory with Threads
	Old Story : one call stack, one pc
	New Story: Shared memory with Threads
	Aside: Other models
	Our Needs
	Java basics
	Parallelism idea
	First attempt, part 1
	First attempt, continued (wrong)
	Second attempt (still wrong)
	Third attempt (correct in spirit)
	Join: Our “wait” method for Threads
	Shared memory?
	How Many Threads do we want?
	Answer: Create many threads!
	What is the running time for this code?
	Naïve algorithm is poor
	A better idea: Divide and Conquer!
	Remember Mergesort?
	Code looks something like this (still using Java Threads)
	Divide-and-conquer really works
	Slide Number 31
	Being realistic
	Half the threads!
	Creating Fewer threads pictorially
	That library, finally
	Different terms, same basic idea
	Fork Join Framework Version: (missing imports)
	Getting good results in practice

