
CSE 332: Data Structures & Parallelism
Lecture 16: Graph Traversals

11/03/2025 1

Ruth Anderson
Autumn 2025

Administrative

EX06 – On Sorting: Due Fri Nov 7
EX07 – On Graphs: programming, coming soon
Resources!
- Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed (Samarth) both in
CSE1 006. A space to ask about course content and topics only as opposed to
direct help with exercises.

- 1-on-1 Meeting Requests - Request a meeting with a staff member if you cannot
make it to regularly scheduled office hours, or feel like you have an issue that
requires a more in depth discussion.

11/03/2025 2

https://forms.gle/8fFJ9FSXaSZoPm9h9

What do we do with graphs
So many things!
-That’s why we said graphs are more general than a single ADT---they don’t have a
standard set of operations.

As a starting point---how could we process the entire graph? Examine
every vertex and every edge?
Called a “search” of the graph or a “traversal”

Two algorithms (with different purposes)

11/03/2025 3

BFS
Start somewhere…
For every vertex (in some order)
Do whatever you want on that vertex
-Sometimes, record some information, store something in there, etc.
-At least, we’ll mark it as having been “visited”

You need to process all of its neighbors…store them in some data
structure to process them. Then back to the top of the loop.

If you use a Queue for your storage structure, you get BFS.

11/03/2025 4

Breadth First Search

Current node:
Queue:
Finished:

F

B

C

D
A

E

G

H

I

J

search(graph)
toVisit.enqueue(first vertex)

mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)

mark v as visited
finished.add(current)

11/03/2025 5

Breadth First Search

Current node:
Queue:
Finished:

F

B

C

D
A

E

G

H

I

J

A B

A
B E C

D
D F G

BDE
H

E

C

C

F

F

G

G
I

G

H

HI

I

search(graph)
toVisit.enqueue(first vertex)

mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)

mark v as visited
finished.add(current)

11/03/2025 6

Breadth First Search

F

B

C

D
A

E

G

H

I

J

search(graph)
toVisit.enqueue(first vertex)

mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)

mark v as visited
finished.add(current)

What’s the running time of this algorithm?
We visit each vertex at most twice, and each edge at most once:
𝑂𝑂(|𝑉𝑉| + |𝐸𝐸|)

11/03/2025 7

Depth First Search (DFS)
BFS uses a queue to order which vertex we move to next
Gives us a growing “frontier” movement across graph
Can you move in a different pattern? What if you used a stack instead?

dfs(graph, curr)
mark curr as visited
for(v : curr.neighbors()){

if(v is not visited){
dfs(graph, v)

}
}
mark curr as “done”

bfs(graph)
toVisit.enqueue(first vertex)

mark first vertex as visited
while(toVisit is not empty)

current = toVisit.dequeue()
for (V : current.neighbors())

if (v is not visited)
toVisit.enqueue(v)

mark v as visited
finished.add(current)

11/03/2025 8

Depth First Search

Finished :

F

B

C

D
A

E

G

H

J

dfs(graph, curr)
mark curr as visited
for(v : curr.neighbors()){

if(v is not visited){
dfs(graph, v)

}
}
mark curr as “done”

Call Stack
11/03/2025 9

Depth First Search

Finished:

F

B

C

D
A

E

G

H

J

dfs(graph, curr)
mark curr as visited
for(v : curr.neighbors()){

if(v is not visited){
dfs(graph, v)

}
}
mark curr as “done”

Call Stack A; (A,B)

B;(B,C)

C;(C,E)

E;(E,D)

D;(D,F)

F

F D

E;(E,H)

H;(H,G)

G H E C B A

G

11/03/2025 10

DFS
Running time?
-Same as BFS: Θ(𝑉𝑉 + 𝐸𝐸)

You can rewrite DFS to be an iterative method (that explicitly uses a
stack data structure). Use that in place of the call stack.
Getting the details right is actually pretty annoying/subtle.

Next: Using BFS, DFS and other algorithms to solve problems!

11/03/2025 11

DFS for applications
Applications for DFS (and BFS) are often:
Run [D/B]FS, and do some extra bookkeeping.
-Many applications work (easily) with only one ordering.

For DFS, it’s common to classify based on “start” and “finish” times
When vertices go on the (call) stack, and when they come off.

11/03/2025 12

Depth First Search

Finished :

F

B

C

D
A

E

G

H

J

dfs(graph, curr)
mark curr as visited
record curr.start
for(v : curr.neighbors()){

if(v is not visited){
dfs(graph, v)

}
}
mark curr as “done”
record curr.end

Call Stack A; (A,B)

B;(B,C)

C;(C,E)

E;(E,D)

D;(D,F)

F

F D

E;(E,H)

H;(H,G)

G H E C B A

G

1

2

3

4

(A,B), (B,C), (C,E) cause a new vertex to
go on the stack.
(E,B) goes “back” to an edge that’s
already on the stack, but not finished.

56 7 8

9

10 11

12 13

14

15

16

11/03/2025 13

Saving the path
Our graph traversals can answer the “reachability question”:
-“Is there a path from node x to node y?”

Q: But what if we want to output the actual path?
-Like getting driving directions rather than just knowing it’s possible to get there!

A: Like this:
-Instead of just “marking” a node, store the previous node along the path (when
processing u causes us to add v to the search, set v.pred field to be u)

-When you reach the goal, follow pred fields backwards to where you started
(and then reverse the answer)

-If just wanted path length, could put the integer distance at each node instead

11/03/2025 15

Example using BFS

11/03/2025

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

16

Example using BFS

11/03/2025

Seattle

San Francisco
Dallas

Salt Lake City

What is a path from Seattle to Austin
– Remember marked nodes are not re-enqueued
– Note shortest paths may not be unique

Chicago

Austin

1

1

1

2
3

0

17

	CSE 332: Data Structures & Parallelism��Lecture 16: Graph Traversals�
	Administrative
	What do we do with graphs
	BFS
	Breadth First Search
	Breadth First Search
	Breadth First Search
	Depth First Search (DFS)
	Depth First Search
	Depth First Search
	DFS
	DFS for applications
	Depth First Search
	Saving the path
	Example using BFS
	Example using BFS

