CSE 332: Data Structures & Parallelism
Lecture 16: Graph Traversals

Ruth Anderson
Autumn 2025

11/03/2025

Administrative

EX06 — On Sorting: Due Fri Nov 7

EXO7 — On Graphs: programming, coming soon

Resources!

Conceptual Office Hours: 11:30 Tues (Connor) and 11:30 Wed (Samarth) both in

CSE1006. A space to ask about course content and topics only as opposed to
direct help with exercises.

1-on-1 Meeting Requests - Request a meeting with a staff member if you cannot
make it to regularly scheduled office hours, or feel like you have an issue that
requires a more in depth discussion.

11/03/2025

https://forms.gle/8fFJ9FSXaSZoPm9h9

What do we do with graphs

So many things!

That's why we said graphs are more general than a single ADT---they don't have a
standard set of operations.

" As a starting point---how could we process the entire graph? Examine

every vertex and every edge?

Called a “search” of the graph or a “traversal”

Two algorithms (with different purposes)

11/03/2025

BFS

Start somewhere...
For every vertex (in some order)

Do whatever you want on that vertex

Sometimes, record some information, store something in there, etc.
At least, we'll mark it as having been “visited”

You need to process all of its neighbors...store them in some data
structure to process them. Then back to the top of the loop.

If you use a Queue for your storage structure, you get BFS.

11/03/2025

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
mark first vertex as visited
—whille (toVisit 1s not empty)
current = toVisit.dequeue ()

Tor (V : current.neighbors())

if (v 1is visited)
toVisit.enqueue (V)

B mark v as visited

/ finished.add (current)

G

Current node:
Queue:
Finished:

11/03/2025

Breadth First Search

search (graph)

toVisgit.enqueue (first vertex)
H@I&ifirst vertex as visited

hhile toVisit 1s not empty) O @

. current = toVisit.dequeue() (;/ <:>
v or (V : current.neighbors()) O @
_ﬁi (v 1s not visited)
toVisit.enqueue (v) (: (:)
> O
mark v as visited
u,,——flnlshed add (current)

Current node: |
Queue: BDECF GHI

P
e O(J+E)
Finished: ABDECF GH |

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
mark first vertex as visited <:)
while (toVisit 1s not empty)
current = toVisit.dequeue () (;/ <:>
for (V : current.neighbors()) <:>
1f (v 1s not visited)
toVisit.enqueue (v) (: (:)
mark v as visited
finished.add (current) O

What's the running time of this algorithm?

We visit each vertex at most twice, and each edge at most once:
o(V|] + |E])

11/03/2025

Depth First Search (DFS)

BFS uses a queue to order which vertex we move to next

Gives us a growing “frontier” movement across graph

Can you move In a different pattern? What if you used a stack instead?

bfs (graph) dfs (graph, curr)

toVisit.enqueue (first vertex) mark curr as visited

mark first vertex as visited for(v : curr.neighbors()) {
while (toVisit 1s not empty) 1f(v 1s not visited) {

current = toVisit.dequeue () dfs (graph, wv)

for (V : current.neighbors()) }

1f (v 1is not visited) }
toVisit.enqueue (v) mark curr as “done”

mark v as visited
finished.add (current)

11/03/2025

Depth First Search
Téfgzgraph, curr)

mark curr as visited <E>
ffor(: curr. nelqhbors(

1f(x 1s not wvisited) <:> <:>
graph, V) @
}

)
mark curr as “done” <:> <:>

Finished :
Call Stack

11/03/2025

Depth First Search

dfs (graph, curr)

—>*mark curr as visited

(for (v : curr.neighbors()) {
1f(v 1s not visited) {

dfs (graph, V)
}

L
e-——j}mark curr as “done”

Finished: F pG HECB A
Call Stack

11/03/2025

DFS

Running time?
Same as BFS: O(|V]| + |E])

You can rewrite DFS to be an iterative method (that explicitly uses a
stack data structure). Use that in place of the call stack.

Getting the details right is actually pretty annoying/subtle.

Next: Using BFS, DFS and other algorithms to solve problems!

11/03/2025

1

DFS for applications

Applications for DFS (and BFS) are often:
Run [D/B]FS, and do some extra bookkeeping.

Many applications work (easily) with only one ordering.

For DFS, it's common to classify based on “start” and “finish” times

When vertices go on the (call) stack, and when they come off.

11/03/2025

12

] (A,B), (B,O), (C,E) cause a new vertex to
Depth First Search go on the stack.
(E,B) goes “back” to an edge that's

dfs (graph, curr) already on the stack, but not finished.

mark curr as visited
1record curr.starf] 1011
for(v : curr.neighbors()) {

1f (v 1s not visited) {
dfs (graph, v)
}
}

mark curr as “done”
—
Fecord curr.end

S —

Finished: F pG HECB A
Call Stack

11/03/2025

Saving the path

Our graph traversals can answer the “reachability question”
"[s there a path from node x to node y?”

Q: But what if we want to output the actual path?
Like getting driving directions rather than just knowing it's possible to get there!

A: Like this:
Instead of just “marking” a node, store the previous node along the path (when
processing u causes us to add v to the search, set v.pred field to be u)

When you reach the goal, follow pred fields backwards to where you started
(and then reverse the answer)

If just wanted path length, could put the integer distance at each node instead

11/03/2025

15

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

Seattle

San Francisco

Dallas

11/03/2025

Chicago

Austin

16

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

1 Chicago

‘ Salt Lake City

Austin

San Francisco

Dallas

11/03/2025

17

	CSE 332: Data Structures & Parallelism��Lecture 16: Graph Traversals�
	Administrative
	What do we do with graphs
	BFS
	Breadth First Search
	Breadth First Search
	Breadth First Search
	Depth First Search (DFS)
	Depth First Search
	Depth First Search
	DFS
	DFS for applications
	Depth First Search
	Saving the path
	Example using BFS
	Example using BFS

