CSE 332: Data Structures & Parallelism Lecture 10: AVL Trees (part 2)

Ruth Anderson Autumn 2025

Administrative

- EX03 On Recurrences, Due Fri Oct 17
- EX04 On AVL Trees: programming, Due Fri Oct 24
- Mid Quarter Survey, Due Sat Oct 18
- "Meet the Staff" activity
 - Sometime during the first 4-5 weeks of class, visit a
 CSE 332 office hour (in person or on zoom)
- Lecture MegaThread in Ed Discussion

Today

- Dictionaries
 - AVL Trees
 - AVL Rotations
 - Height bound on AVL Trees

The AVL Balance Condition:

Left and right subtrees of every node have heights differing by at most 1

Define: balance(x) = height(x.left) - height(x.right)

AVL property: $-1 \le balance(x) \le 1$, for every node x

- Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a lot of (*roughly* 2h) nodes
- Easy to maintain
 - Using single and double rotations

Note: height of a null tree is -1, height of tree with a single node is 0

AVL tree insert

Let b be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

- 1. left subtree of the left child of b.
- 2. right subtree of the left child of b.
- 3. left subtree of the right child of *b*.
- right subtree of the right child of b.

Idea: Cases 1 & 4 are solved by a single rotation.

How Long Does Rebalancing Take?

- Assume we store in each node the height of its subtree.
- How do we find an unbalanced node?

How many rotations might we have to do?

How Long Does Rebalancing Take? (answer)

- Assume we store in each node the height of its subtree.
- How do we find an unbalanced node?
 - Just go back up the tree from where we inserted.
- How many rotations might we have to do?
 - Just a single or double rotation on the lowest unbalanced node.
 - A rotation will cause the subtree rooted where the rotation happens to have the same height it had before insertion.

Where Were We?

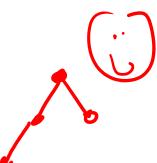
- We used rotations to restore the AVL property after insertion.
- If h is the height of an AVL tree:
 - It takes O(h) time to find an imbalance (if any) and fix it.
 - So the worst case running time of insert? $\Theta(h)$.
- Is h always $O(\log n)$? YES! These are all $O(\log n)$. Let's prove it!
- Notice: for a given height h:
 - I would prefer a tree that stores as many nodes as possible
 - My adversary would like it to store as few nodes as possible.

Bounding the Height

Suppose you have a tree of height h, meeting the AVL condition:

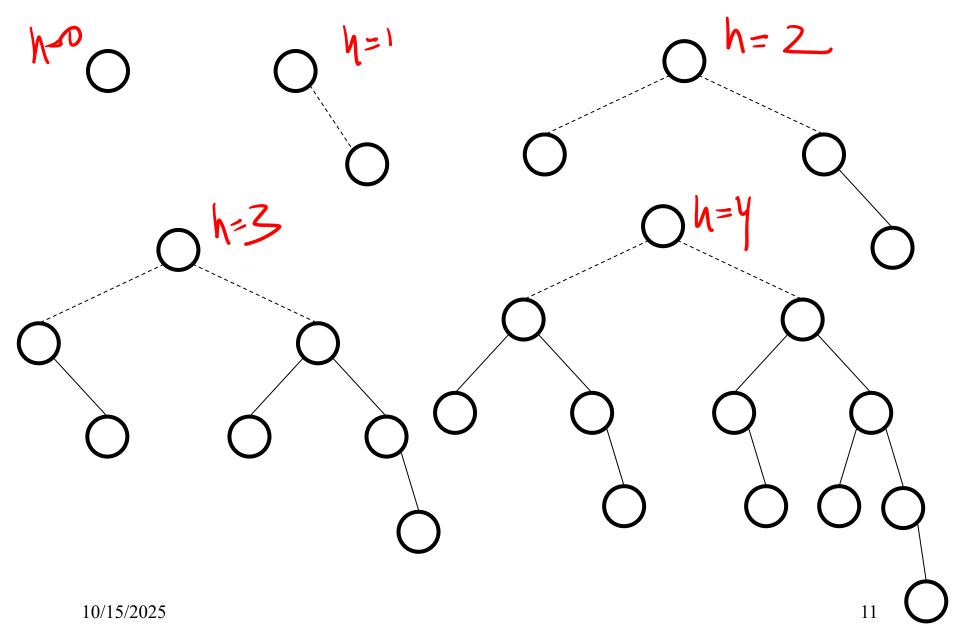
AVL condition: For every node, the height of its left subtree and right subtree differ by at most 1.

- What is the minimum number of nodes in the tree?
- If h = 0, then 1 node
- If h = 1, then 2 nodes.



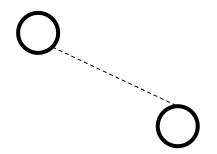
Let **s** (h) be the minimum # of nodes in an AVL tree of height *h*, then: Minimal AVL Tree h S(h)

Minimal AVL Trees

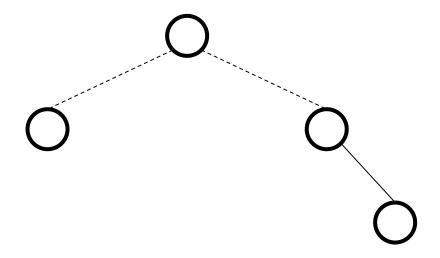


Minimal AVL Tree (height = 0)

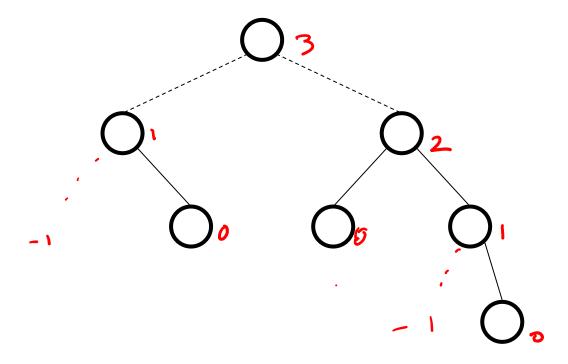
Minimal AVL Tree (height = 1)



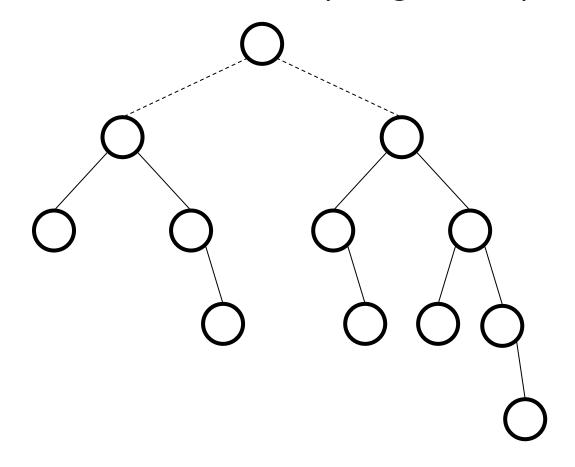
Minimal AVL Tree (height = 2)



Minimal AVL Tree (height = 3)



Minimal AVL Tree (height = 4)



Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum number of nodes in an AVL tree of height *h*

Let **s** (h) be the minimum # of nodes in an AVL tree of height h, then:

$$\mathbf{S}(h) = \mathbf{S}(h-1) + \mathbf{S}(h-2) + 1$$

where $\mathbf{S}(-1) = 0$ and $\mathbf{S}(0) = 1$

Solution of Recurrence: S (h) $\approx 1.62^h$

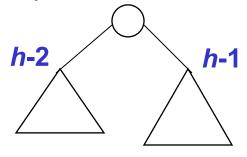
The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

- If we can prove that S(h) grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define S(h) inductively using AVL property

$$- S(-1)=0, S(0)=1, S(1)=2$$

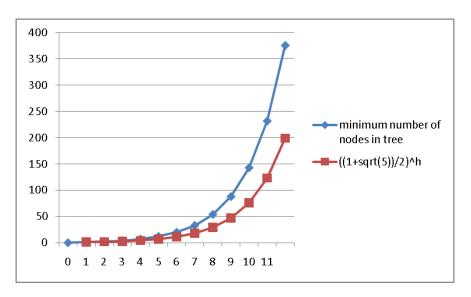
- For
$$h \ge 1$$
, $S(h) = 1+S(h-1)+S(h-2)$

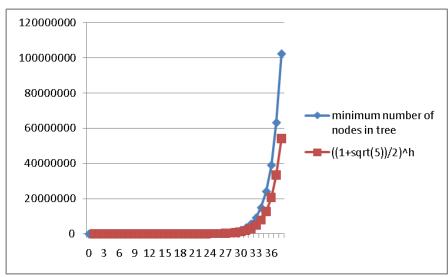


- Step 2: Show this recurrence grows really fast
 - Similar to Fibonacci numbers
 - Can prove for all h, $S(h) > \phi^h 1$ where ϕ is the golden ratio, $(1+\sqrt{5})/2$, about 1.62
 - Growing faster than 1.6^h is "plenty exponential"

Aside: Before we prove it

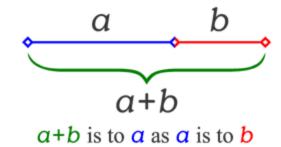
- Good intuition from plots comparing:
 - -S(h) computed directly from the definition
 - $-((1+\sqrt{5})/2)^h$
- S(h) is always bigger, up to trees with huge numbers of nodes
 - Graphs aren't proofs, so let's prove it





Aside: The Golden Ratio

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.62$$



This is a special number

- Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio: If (a+b) /a = a/b, then a = φb
- We will need one special arithmetic fact about φ :

$$\phi^{2} = ((1+5^{1/2})/2)^{2}$$

$$= (1 + 2*5^{1/2} + 5)/4$$

$$= (6 + 2*5^{1/2})/4$$

$$= (3 + 5^{1/2})/2$$

$$= 1 + (1 + 5^{1/2})/2$$

$$= 1 + \phi$$

The proof

$$S(-1)=0$$
, $S(0)=1$, $S(1)=2$
For $h \ge 1$, $S(h) = 1+S(h-1)+S(h-2)$

Theorem: For all $h \ge 0$, $S(h) > \phi^h - 1$

Proof: By induction on h

Base cases:

$$S(0) = 1 > \phi^0 - 1 = 0$$

$$S(1) = 2 > \phi^1 - 1 \approx 0.62$$

Inductive case (k > 1):

Show
$$S(k+1) > \phi^{k+1} - 1$$
 assuming $S(k) > \phi^k - 1$ and $S(k-1) > \phi^{k-1} - 1$

$$S(k+1) = 1 + S(k) + S(k-1)$$
by definition of S $> 1 + \phi^k - 1 + \phi^{k-1} - 1$ by induction $= \phi^k + \phi^{k-1} - 1$ by arithmetic (1-1=0) $= \phi^{k-1} (\phi + 1) - 1$ by arithmetic (factor ϕ^{k-1}) $= \phi^{k-1} \phi^2 - 1$ by special property of ϕ $= \phi^{k+1} - 1$ by arithmetic (add exponents)

Now efficiency

- Worst-case complexity of find:
 - Tree is balanced
- Worst-case complexity of insert:
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - (Same complexity even without one-rotation-is-enough fact)
 - Tree ends balanced

- delete? (see 3 ed. Weiss) requires more rotations: _____
- Lazy deletion?

Now efficiency

- Worst-case complexity of find: O(log n)
 - Tree is balanced
- Worst-case complexity of insert: O(log n)
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - (Same complexity even without one-rotation-is-enough fact)
 - Tree ends balanced

• **delete?** (see 3 ed. Weiss) requires more rotations: $O(\log n)$

Pros and Cons of AVL Trees

Arguments for AVL trees:

- All operations logarithmic worst-case because trees are always balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug
- More space for height field
- 3. Asymptotically faster but rebalancing takes a little time