
CSE 332: Data Structures & Parallelism

Lecture 8: Dictionaries; Binary Search Trees

Ruth Anderson
Autumn 2025

Administrative

• EX02 – On Priority Queues, Due TONIGHT Friday Oct 10
• EX03 – On Recurrences, Due Fri Dec 17
• Mid Quarter Survey, coming soon!
• “Meet the Staff” activity

– Sometime during the first 4 weeks of class, visit a
CSE 332 office hour (in person or on zoom)

• Lecture MegaThread in Ed Discussion

10/10/2025 2

Today

• Dictionaries
• Binary Trees
• Binary Search Trees

10/10/2025 3

Where we are

Studying the absolutely essential ADTs of computer science and
classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, …
2. Queue: enqueue, dequeue, isEmpty, …
3. Priority queue: insert, deleteMin, …

Next:
4. Dictionary (a.k.a. Map): associate keys with values

– probably the most common, way more than priority queue

10/10/2025 4

The Dictionary (a.k.a. Map) ADT

Data:
• set of (key, value) pairs
• keys must be comparable

Operations:
• insert(key,val):

- places (key,val) in map
(If key already used, overwrites
existing entry)

• find(key):
- returns val associated with key

• delete(key)

– …

• rea
Ruth
Anderson
…

• jhsia
Justin
Hsia
…

insert(rea, Ruth Anderson)

find(jhsia)

Justin Hsia,…

We will tend to emphasize the keys, but
don’t forget about the stored values!10/10/2025 5

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
– A key is present or not (no repeats)

For find, insert, delete, there is little difference
– In dictionary, values are “just along for the ride”
– So same data-structure ideas work for dictionaries and sets

• Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
– union, intersection, is_subset, etc.
– Notice these are binary operators on sets
– We will want different data structures to implement these

operators
10/10/2025 6

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and
be able to retrieve it efficiently – a dictionary is the ADT to use!
– Lots of programs do that!

• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Search: inverted indexes, phone directories, …
• Biology: genome maps
• …

10/10/2025 7

Simple implementations
For dictionary with n key/value pairs

We’ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

10/10/2025 8

insert find delete

Unsorted linked-list

Unsorted array

Sorted linked list

Sorted array

Simple implementations
For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(n) * O(n) O(n)

• Unsorted array O(n)* O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

We’ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

*Note: If we insert the same key more than once (say to update the value
associated with a key), we must first check to see if it exists, before inserting
it, so our running time takes at least as long as a find operation.

10/10/2025 9

Lazy Deletion (e.g. in a sorted array)

A general technique for making delete as fast as find:
– Instead of actually removing the item just mark it deleted
– No need to shift values, etc.

Plusses:
– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:
– Extra space for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes space
– find O(log m) time where m is data-structure size (m >= n)
– May complicate other operations

10/10/2025 10

10 12 24 30 41 42 44 45 50
        

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with two
different data structures

1. AVL trees
– Binary search trees with guaranteed balancing

2. Hashtables
– Not tree-like at all

Skipping: Other balanced trees (B-trees, red-black, splay)

10/10/2025 11

Binary Trees

• Binary tree is empty or
– a root (with data)
– a left subtree (maybe empty)
– a right subtree (maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data
right

pointer
left

pointer

• For a dictionary, data will include a
key and a value

10/10/2025 12

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

10/10/2025 13

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1
1

h + 1

For n nodes, we cannot do better than O(log n) height,
and we want to avoid O(n) height

10/10/2025 14

Calculating height

What is the height of a tree with root root?

10/10/2025 15

int treeHeight(Node root) {

???

}

Calculating height
What is the height of a tree with root r?

10/10/2025 16

int treeHeight(Node root) {
if(root == null)
return -1;

return 1 + max(treeHeight(root.left),
treeHeight(root.right));

}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending
nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

10/10/2025 17

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
+ * 2 4 5

• In-order: left subtree, root, right subtree
2 * 4 + 5

• Post-order: left subtree, right subtree, root
2 4 * 5 +

+

*

2 4

5

(an expression tree)

10/10/2025 18

More on traversals

void inOrdertraversal(Node t){
if(t != null) {
traverse(t.left);
process(t.element);
traverse(t.right);

}
}

Sometimes order doesn’t matter
• Example: sum all elements

Sometimes order matters
• Example: print tree with parent above

indented children (pre-order)
• Example: evaluate an expression tree

(post-order)

A
B

D
E

C
F
G

A

B

D E

C

F G

10/10/2025 19

Binary Search Tree

4

121062

115

8

14

13

7 9

• Structural property (“binary”)
– each node has ≤ 2 children
– result: keeps operations simple

• Order property
– all keys in left subtree smaller

than node’s key
– all keys in right subtree larger

than node’s key
– result: easy to find any given key

10/10/2025 20

Are these BSTs?

10/10/2025 21

3

1171

84

5

4

181062

115

8

20

21

7

15

Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

10/10/2025 22

Yes No

Find in BST, Recursive

2092

155

12

307 1710

Data find(Key key, Node root){
if(root == null)
return null;

if(key < root.key)
return find(key,root.left);

if(key > root.key)
return find(key,root.right);

return root.data;
}

10/10/2025 23

Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){
while(root != null

&& root.key != key) {
if(key < root.key)
root = root.left;

else(key > root.key)
root = root.right;

}
if(root == null)

return null;
return root.data;
}

10/10/2025 24

Other “finding operations”

• Find minimum node

• Find maximum node

10/10/2025 25

2092

155

12

307 1710

Insert in BST

10/10/2025 26

insert(13)
insert(8)
insert(31)

(New) insertions happen
only at leaves – easy!

1. Find
2. Create a new node

2092

155

12

307 1710

Deletion in BST

2092

155

12

307 17

Why might deletion be harder than insertion?

10

10/10/2025 27

Deletion
• Removing an item disrupts the tree structure

• Basic idea:
– find the node to be removed,
– Remove it
– “fix” the tree so that it is still a binary search tree

• Three cases:
– node has no children (leaf)
– node has one child
– node has two children

10/10/2025 28

Deletion – The Leaf Case

2092

155

12

307 17

delete(17)

10

10/10/2025 29

Deletion – The One Child Case

2092

155

12

307 10

10/10/2025 30

delete(15)

Deletion – The Two Child Case

10/10/2025 31

delete(5)

What can we replace 5 with?

3092

205

12

7 10

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
• successor from right subtree: findMin(node.right)
• predecessor from left subtree: findMax(node.left)

– These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
• Leaf or one child case – easy cases of delete!

10/10/2025 32

Delete Using Successor

3092

205

12

7 10

delete(5)

findMin(right sub tree)  7

3092

207

12

10

10/10/2025 33

Delete Using Predecessor

3092

205

12

7 10

delete(5)

findMax(left sub tree)  2

309

202

12

7 10

10/10/2025 34

Binary Search Trees as Dictionaries?

• Keys will have to be comparable…
• What is the worst case for insert and find?

Insert Find Delete

Worse-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

10/10/2025 35

Balanced BST

Observation
• BST: the shallower the better!
• For a BST with n nodes inserted in arbitrary order

– Average height is O(log n) – see text for proof
– Worst case height is O(n)

• Simple cases such as inserting in key order lead to
the worst-case scenario

Solution: Require a Balance Condition that
1. ensures depth is always O(log n) – strong enough!
2. is easy to maintain – not too strong!

10/10/2025 36

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

10/10/2025 37

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

10/10/2025 38

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

10/10/2025 39

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees allowed

Too strong!
Only perfect trees allowed

10/10/2025 40

41

The AVL Balance Condition
Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 ≤ balance(x) ≤ 1

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

• Easy (well, efficient) to maintain
– Using single and double rotations

10/10/2025

	CSE 332: Data Structures & Parallelism��Lecture 8: Dictionaries; Binary Search Trees
	Administrative
	Today
	Where we are
	The Dictionary (a.k.a. Map) ADT
	Comparison: Set ADT vs. Dictionary ADT
	A Modest Few Uses for Dictionaries
	Simple implementations
	Simple implementations
	Lazy Deletion (e.g. in a sorted array)
	Better Dictionary data structures
	Binary Trees
	Binary Tree: Some Numbers
	Binary Trees: Some Numbers
	Calculating height
	Calculating height
	Tree Traversals
	Tree Traversals
	More on traversals
	Binary Search Tree
	Are these BSTs?
	Are these BSTs?
	Find in BST, Recursive
	Find in BST, Iterative
	Other “finding operations”
	Insert in BST
	Deletion in BST
	Deletion
	Deletion – The Leaf Case
	Deletion – The One Child Case
	Deletion – The Two Child Case
	Deletion – The Two Child Case
	Delete Using Successor
	Delete Using Predecessor
	Binary Search Trees as Dictionaries?
	Balanced BST
	Potential Balance Conditions
	Potential Balance Conditions
	Potential Balance Conditions
	Potential Balance Conditions
	The AVL Balance Condition

