CSE332: Data Structures & Parallelism Lecture 3: Algorithm Analysis

Ruth Anderson Autumn 2025

Administrative

- Survey Due <u>TONIGHT</u>! Monday 9/29
- EX0 Due next Friday 10/03
- Ex1 released later tonight, due next Monday 10/06
- "Meet the Staff" activity
 - Sometime during the first 4 weeks of class, visit a CSE 332 office hour (in person or on zoom)
 - Tell the staff member you want to get checked off
 - You do not have to have a question about course content
 - We just want to meet you!
- Lecture MegaThread in Ed Lessons
 - We will have one of these for each lecture
 - Feel free to ask questions there during or after lecture!

Today – Algorithm Analysis Day 2

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis (previous slide deck)
- Big-Oh Definition (previous slide deck)
- Big-Oh Proofs

Proving Big-O, Formally

- Big-O is an $\exists c, n_0 \forall n$ statement.
- I.e., an exists statement with a "forall" inside.
- How do you prove an exists statement?
- How do you prove a for-all statement?

Proving Big-O, Formally (answers)

- Big-O is an $\exists c, n_0 \forall n$ statement.
- I.e., an exists statement with a "forall" inside.
- How do you prove an exists statement?
 - Show the c, n_0 that will work. Give specific values.
- How do you prove a for-all statement?
 - Introduce an arbitrary n.

Using the Definition

• Let's show: $10n^2 + 15n$ is $O(n^2)$

Using the Definition (2)

• Let's show: $10n^2 + 15n$ is $O(n^2)$

Using the Definition

• Let's show: $10n^2 + 15n$ is $O(n^2)$

Scratch work:

```
10n^2 < 10n^2
15n < 15n^2 for n > 1
10n^2 + 15n \le 25n^2 for n \ge 1
```

Proof:

Take c=25 and $n_0=1$. For an arbitrary $n\geq n_0$, we have The inequality $10n^2 \le 10n^2$ is always true. The inequality $15n \le 15n^2$ is true for $n \ge 15n^2$ 1, as the right hand side is a factor of n more than the right hand side.

As long as both inequalities are true we can add them, thus

$$10n^2 + 15n \le 25n^2$$
 holds as long as $n \ge 1$.

This is exactly the inequality we needed to show.

Writing Proofs

- Where did that c = 25, $n_0 = 1$ come from?
- That was some "scratch work" the insight isn't explained in the final proof
 - You just say "Consider"
- Don't try to skip the scratch work when <u>drafting</u> your big-O proofs.
 - But it won't appear in your final version.

Be sure you're arguing in correct logical order---you only assert something is true when you know it. Often that's the reverse of the scratch work order.

Don't just choose $c=10^{10}$, $n_0=10^5$. That will be technically correct, but proofs are acts of communication; that won't convince your reader if they didn't already believe the claim; smaller values with algebra are more convincing than overkill.