
CSE332: Data Structures & Parallelism

Lecture 2: Algorithm Analysis

Ruth Anderson
Autumn 2025

Administrative

• Survey – Due Monday 9/29
• EX0 – Due next Friday 10/03
• “Meet the Staff” activity

– Sometime during the first 4 weeks of class, visit a CSE 332
office hour (in person or on zoom)

– Tell the staff member you want to get checked off
– You do not have to have a question about course content
– We just want to meet you!

• Lecture MegaThread in Ed Lessons
– We will have one of these for each lecture
– Feel free to ask questions there during or after lecture!

9/26/2025 2

Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition

39/26/2025

What do we care about?

• Correctness:
– Does the algorithm do what is intended.

• Performance:
– Speed time complexity
– Memory space complexity

• Why analyze?
– To make good design decisions
– Enable you to look at an algorithm (or code) and identify the

bottlenecks, etc.

49/26/2025

Q: How should we compare two algorithms?

59/26/2025

A: How should we compare two algorithms?

• Uh, why NOT just run the program and time it??
– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.
• OS, Java version, libraries, drivers
• Other programs running
• Implementation dependent

– Choice of input
• Testing (inexhaustive) may miss worst-case input
• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation
– Even before creating the implementation (“coding it up”)

69/26/2025

Comparing algorithms

When is one algorithm (not implementation) better than another?
– Various possible answers (clarity, security, …)
– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good”
for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up
and timing it on some test cases”
– Can do analysis before coding!

79/26/2025

Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code

– How to count different code constructs
– Best Case vs. Worst Case
– Ignoring Constant Factors

• Asymptotic Analysis
• Big-Oh Definition

89/26/2025

Algorithm Analysis

• Usually, define a function 𝑓𝑓:ℕ → ℕ
• Domain: size of the input to the code (e.g., number of

elements in our array, number of characters in our string)
• Co-Domain: Counts of resources used (e.g., number of basic

operations [time], number of bytes of memory used, etc.)

• Be sure you’re clear on the units of your domain and co-
domain
– It won’t make a big difference for this class, but in complexity theory

(e.g. CSE 431, some of 421) bits of input vs. number of elements
as input can make a big difference.

9

What Are We Counting?

• Worst case analysis
– What’s the 𝑓𝑓(𝑁𝑁) [running time, memory, etc.] for the worst state our data

structure can be in or the worst input we can give of size 𝑁𝑁? (i.e. the
biggest 𝑓𝑓 𝑁𝑁 could be on an input size 𝑁𝑁)

• Best case analysis
– What is 𝑓𝑓 𝑁𝑁 for the best state of our structure and the best question of

size 𝑁𝑁? (the smallest 𝑓𝑓 𝑁𝑁 could be)

• Average case analysis
– What is the value of 𝑓𝑓(𝑁𝑁) on average over all possible inputs of size 𝑁𝑁?
– Have to ask this question very carefully to get a meaningful answer

• We usually do worst case analysis.

10

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time
– Arithmetic
– Assignment
– Access one Java field or array index
– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement
Loops Num iterations * time for loop body
Conditionals Time of condition plus time of

slower branch
Function Calls Time of function’s body
Recursion Solve recurrence equation

119/26/2025

Examples
b = b + 5
c = b / a
b = c + 100

for (i = 0; i < n; i++) {
sum++;

}

if (j < 5) {
sum++;

} else {
for (i = 0; i < n; i++) {

sum++;
}

}

129/26/2025

Another Example

int coolFunction(int n, int sum) {
int i, j;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
sum++;
}

}
print "This program is great!"
for (i = n; i > 1; i = i / 2) {

sum++;
}
return sum

}

139/26/2025

Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code

– How to count different code constructs
– Best Case vs. Worst Case

• Asymptotic Analysis
• Big-Oh Definition

149/26/2025

Linear search – Best Case & Worst Case

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:

159/26/2025

Asymptotic Notation

• That’s a nice formula. But does everything in it matter?
• Multiplying by constant factors doesn’t matter – let’s just ignore

them.
• Lower order terms don’t matter – delete them.
• Gives us a “simplified big-O”

• 10𝑛𝑛 log𝑛𝑛 + 3𝑛𝑛
• 5𝑛𝑛2 log𝑛𝑛 + 13𝑛𝑛3

• 20𝑛𝑛 log log𝑛𝑛 + 2 𝑛𝑛 log𝑛𝑛
• 23𝑛𝑛

17

Asymptotic Notation

• That’s a nice formula. But does everything in it matter?
• Multiplying by constant factors doesn’t matter – let’s just ignore

them.
• Lower order terms don’t matter – delete them.
• Gives us a “simplified big-O”

• 10𝑛𝑛 log𝑛𝑛 + 3𝑛𝑛
• 5𝑛𝑛2 log𝑛𝑛 + 13𝑛𝑛3

• 20𝑛𝑛 log log𝑛𝑛 + 2 𝑛𝑛 log𝑛𝑛
• 23𝑛𝑛

18

𝑂𝑂(𝑛𝑛 log𝑛𝑛)
𝑂𝑂 𝑛𝑛3

𝑂𝑂(𝑛𝑛 log𝑛𝑛)
𝑂𝑂(8𝑛𝑛)

Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code

– How to count different code constructs
– Best Case vs. Worst Case, and more

• Asymptotic Analysis
• Big-Oh Definition

199/26/2025

Formally Big-O

• We wanted to find an upper bound on our algorithm’s running
time, but
– We don’t want to care about constant factors.
– We only care about what happens as 𝑛𝑛 gets large.

• The formal, mathematical definition is Big-O.

20

𝑓𝑓(𝑛𝑛) is 𝑂𝑂(𝑔𝑔 𝑛𝑛) if there exist positive constants 𝑐𝑐,𝑛𝑛0 such
that for all 𝑛𝑛 ≥ 𝑛𝑛0,

𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐 ⋅ 𝑔𝑔 𝑛𝑛

Big-𝑶𝑶

We also say that 𝑔𝑔 𝑛𝑛 “dominates” 𝑓𝑓(𝑛𝑛).

Why is that the definition?

• Why 𝑛𝑛0?

21

Why 𝑐𝑐?

𝑓𝑓(𝑛𝑛) is 𝑂𝑂(𝑔𝑔 𝑛𝑛) if there exist positive
constants 𝑐𝑐,𝑛𝑛0 such that for all 𝑛𝑛 ≥ 𝑛𝑛0,

𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐 ⋅ 𝑔𝑔 𝑛𝑛

Big-𝑶𝑶

Why Are We Doing This?

• You already intuitively understand what big-O means.
• Who needs a formal definition anyway?

– We will.
• Your intuitive definition and my intuitive definition might be

different.
• We’re going to be making more subtle big-O statements in

this class.
– We need a mathematical definition to be sure we’re on the same

page.
• Once we have a mathematical definition, we can go back to

intuitive thinking.
– But when a weird edge case, or subtle statement appears, we can

figure out what’s correct.

22

Edge Cases

• True or False: 10𝑛𝑛2 + 15𝑛𝑛 is 𝑂𝑂(𝑛𝑛3)
• [this is an edge case]

23

Edge Cases

• True or False: 10𝑛𝑛2 + 15𝑛𝑛 is 𝑂𝑂(𝑛𝑛3)
• [this is an edge case]
• It’s true! – it fits the definition.
• Big-O is just an upper bound. It doesn’t have to be a “good”

upper bound.
• If we want the “best” upper bound, we’ll ask you for a tight

big-O bound.
• 𝑂𝑂 𝑛𝑛2 is the tight bound for this example.
• It is (usually) technically correct to say your code runs in time

𝑂𝑂(𝑛𝑛𝑛𝑛!).
– DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or

in an interview.

24

O, Omega, Theta [oh my?]

• Big-O is an upper bound
– My code uses at most this many resources (e.g. runs in at most this

much time)
• Big-Omega is a lower bound

• Big Theta is “equal to”

25

𝑓𝑓(𝑛𝑛) is Ω(𝑔𝑔 𝑛𝑛) if there exist positive constants 𝑐𝑐, 𝑛𝑛0 such
that for all 𝑛𝑛 ≥ 𝑛𝑛0,

𝑓𝑓 𝑛𝑛 ≥ 𝑐𝑐 ⋅ 𝑔𝑔 𝑛𝑛

Big-Omega

𝑓𝑓(𝑛𝑛) is Θ(𝑔𝑔 𝑛𝑛) if
𝑓𝑓 𝑛𝑛 is 𝑂𝑂(𝑔𝑔 𝑛𝑛) and 𝑓𝑓 𝑛𝑛 is Ω(𝑔𝑔 𝑛𝑛).

Big-Theta

Viewing O as a class

• Sometimes you’ll see big-O defined as a family or set of functions.
•

26

O(𝑔𝑔 𝑛𝑛) is the set of all functions 𝑓𝑓 𝑛𝑛 such that there exist
positive constants 𝑐𝑐,𝑛𝑛0 such that for all 𝑛𝑛 ≥ 𝑛𝑛0, 𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐 ⋅ 𝑔𝑔 𝑛𝑛

Big-O (alternative definition)

For that reason, some people write 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑔𝑔 𝑛𝑛 where we wrote
“𝑓𝑓 𝑛𝑛 is 𝑂𝑂(𝑔𝑔 𝑛𝑛)”.
Other people write “𝑓𝑓 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛 ” to mean the same thing.
We never write 𝑂𝑂(5𝑛𝑛) instead of 𝑂𝑂(𝑛𝑛) – they’re the same thing!

It’s like writing 6
2

instead of 3. It just looks weird.

Common Categories

• The most common running times all have fancy names:
• 𝑂𝑂(1) constant
• 𝑂𝑂(log𝑛𝑛) logarithmic
• 𝑂𝑂 𝑛𝑛 linear
• 𝑂𝑂(𝑛𝑛 log𝑛𝑛) “n log n”
• 𝑂𝑂 𝑛𝑛2 quadratic
• 𝑂𝑂(𝑛𝑛3) cubic
• 𝑂𝑂(𝑛𝑛𝑐𝑐) polynomial (where c is a constant)
• 𝑂𝑂(𝑐𝑐𝑛𝑛) exponential (where c is a constant)

27

What’s the base of the log?

• If I write log𝑛𝑛, without specifying a base, I mean log2 𝑛𝑛 .

• But does it matter for big-O?
• Suppose we found an algorithm with running time log5 𝑛𝑛 instead.
• Is that different from 𝑂𝑂 log2 𝑛𝑛 ?
• No!

• log𝑐𝑐 𝑛𝑛 = log2 𝑛𝑛
log2 𝑐𝑐

If 𝑐𝑐 is a constant, then log2 𝑐𝑐 is just a constant,
and we can hide it inside the 𝑂𝑂().

28

Review: Properties of logarithms

29

• log(A*B) = log A + log B
– So log(Nk)= k log N

• log(A/B) = log A – log B

• X =
• log(log x) is written log log x

– Grows as slowly as 22 grows fast
– Ex:

• (log x)(log x) is written log2x
– It is greater than log x for all x > 2

y

532log2loglog~4loglog 2
32

2222 ==billion

x2log2

9/26/2025

𝑂𝑂,Ω,Θ vs. Best, Worst, Average

• It’s a common misconception that Ω() is “best-case” and 𝑂𝑂()
is “worst-case”. This is a misconception!!

• 𝑂𝑂() says “the complexity of this algorithm is at most” (think
≤)

• Ω() says “the complexity of this algorithm is at least” (think ≥)
• You can use ≤ on worst-case or best case; you can use ≥ on

worst-case or best-case.
• Best/Worst/Average say “what function 𝑓𝑓 am I analyzing?”
• 𝑂𝑂,Ω,Θ say “let me summarize what I know about 𝑓𝑓, it’s ≤,≥

, =…”

30

	CSE332: Data Structures & Parallelism��Lecture 2: Algorithm Analysis
	Administrative
	Today – Algorithm Analysis
	What do we care about?
	Q: How should we compare two algorithms?
	A: How should we compare two algorithms?
	Comparing algorithms
	Today – Algorithm Analysis
	Algorithm Analysis
	What Are We Counting?
	Analyzing code (“worst case”)
	Examples
	Another Example
	Today – Algorithm Analysis
	Linear search – Best Case & Worst Case
	Asymptotic Notation
	Asymptotic Notation
	Today – Algorithm Analysis
	Formally Big-O	
	Why is that the definition?
	Why Are We Doing This?
	Edge Cases
	Edge Cases
	O, Omega, Theta [oh my?]
	Viewing O as a class
	Common Categories
	What’s the base of the log?
	Review: Properties of logarithms
	𝑂,Ω,Θ vs. Best, Worst, Average

