CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis

Ruth Anderson Autumn 2025

Administrative

- Survey Due Monday 9/29
- EX0 Due next Friday 10/03
- "Meet the Staff" activity
 - Sometime during the first 4 weeks of class, visit a CSE 332 office hour (in person or on zoom)
 - Tell the staff member you want to get checked off
 - You do not have to have a question about course content
 - We just want to meet you!
- Lecture MegaThread in Ed Lessons
 - We will have one of these for each lecture
 - Feel free to ask questions there during or after lecture!

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
- Asymptotic Analysis
- Big-Oh Definition

What do we care about?

- Correctness:
 - Does the algorithm do what is intended.
- Performance:
 - Speed time complexity
 - Memory space complexity
- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

Q: How should we compare two algorithms?

A: How should we compare two algorithms?

- Uh, why NOT just run the program and time it??
 - Too much variability, not reliable or portable:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may miss worst-case input
 - Timing does not *explain* relative timing among inputs (what happens when *n* doubles in size)
- Often want to evaluate an algorithm, not an implementation
 - Even before creating the implementation ("coding it up")

Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs,
 runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

Can do analysis before coding!

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
 - How to count different code constructs
 - Best Case vs. Worst Case
 - Ignoring Constant Factors
- Asymptotic Analysis
- Big-Oh Definition

Algorithm Analysis

- Usually, define a function f: N → N
- Domain: <u>size</u> of the input to the code (e.g., number of elements in our array, number of characters in our string)
- Co-Domain: <u>Counts</u> of resources used (e.g., number of basic operations [time], number of bytes of memory used, etc.)
- Be sure you're clear on the units of your domain and codomain
 - It won't make a big difference for this class, but in complexity theory (e.g. CSE 431, some of 421) bits of input vs. number of elements as input can make a big difference.

What Are We Counting?

Worst case analysis

- What's the f(N) [running time, memory, etc.] for the **worst** state our data structure can be in or the **worst** input we can give of size N? (i.e. the biggest f(N) could be on an input size N)

Best case analysis

- What is f(N) for the **best** state of our structure and the best question of size N? (the smallest f(N) could be)

Average case analysis

- What is the value of f(N) on average over all possible inputs of size N?
- Have to ask this question very carefully to get a meaningful answer
- We usually do worst case analysis.

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements Sum of time of each statement

Loops Num iterations * time for loop body

Conditionals Time of condition plus time of

slower branch

Function Calls Time of function's body

Recursion Solve recurrence equation

Examples

```
b = b + 5
c = b / a
b = c + 100
for (i = 0; i < n; i++) {
    sum++;
if (j < 5) {
   sum++;
} else {
  for (i = 0; i < n; i++) {
    sum++;
```

Another Example

```
int coolFunction(int n, int sum) {
   int i, j;
  for (i = 0; i < n; i++) {
     for (j = 0; j < n; j++) {
       sum++;
  print "This program is great!"
  for (i = n; i > 1; i = i / 2) {
       sum++;
   return sum
```

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
 - How to count different code constructs
 - Best Case vs. Worst Case
- Asymptotic Analysis
- Big-Oh Definition

Linear search - Best Case & Worst Case

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
        return true;
    return false;
}</pre>
Best case:

Worst case:
```

Asymptotic Notation

- That's a nice formula. But does everything in it matter?
- Multiplying by constant factors doesn't matter let's just ignore them.
- Lower order terms don't matter delete them.
- Gives us a "simplified big-O"
- $10n \log n + 3n$
- $5n^2 \log n + 13n^3$
- $20n \log \log n + 2n \log n$
- 2^{3n}

Asymptotic Notation

- That's a nice formula. But does everything in it matter?
- Multiplying by constant factors doesn't matter let's just ignore them.
- Lower order terms don't matter delete them.
- Gives us a "simplified big-O"

```
• 10n \log n + 3n

• 5n^2 \log n + 13n^3 O(n \log n)

• 20n \log \log n + 2n \log n O(n^3)

• 2^{3n} O(n \log n)

O(8^n)
```

Today – Algorithm Analysis

- What do we care about?
- How to compare two algorithms
- Analyzing Code
 - How to count different code constructs
 - Best Case vs. Worst Case, and more
- Asymptotic Analysis
- Big-Oh Definition

Formally Big-O

- We wanted to find an upper bound on our algorithm's running time, but
 - We don't want to care about constant factors.
 - We only care about what happens as n gets large.
- The formal, mathematical definition is Big-O.

Big-0

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$,

$$f(n) \le c \cdot g(n)$$

We also say that g(n) "dominates" f(n).

Why is that the definition?

Big-0

f(n) is O(g(n)) if there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

Plot:

8

20

40

60

• Why n_0 ?

80

2 log(n)log(n)

100

Why Are We Doing This?

- You already intuitively understand what big-O means.
- Who needs a formal definition anyway?
 - We will.
- Your intuitive definition and my intuitive definition might be different.
- We're going to be making more subtle big-O statements in this class.
 - We need a mathematical definition to be sure we're on the same page.
- Once we have a mathematical definition, we can go back to intuitive thinking.
 - But when a weird edge case, or subtle statement appears, we can figure out what's correct.

Edge Cases

- True or False: $10n^2 + 15n$ is $O(n^3)$
- [this is an edge case]

Edge Cases

- True or False: $10n^2 + 15n$ is $O(n^3)$
- [this is an edge case]
- **It's true!** it fits the definition.
- Big-O is just an upper bound. It doesn't have to be a "good" upper bound.
- If we want the "best" upper bound, we'll ask you for a tight big-O bound.
- $O(n^2)$ is the tight bound for this example.
- It is (usually) technically correct to say your code runs in time $O(n^{n!})$.
 - DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

O, Omega, Theta [oh my?]

- Big-O is an upper bound
 - My code uses at most this many resources (e.g. runs in at most this much time)
- Big-Omega is a lower bound

Big-Omega

f(n) is $\Omega(g(n))$ if there exist positive constants c, n_0 such that for all $n \ge n_0$,

$$f(n) \ge c \cdot g(n)$$

Big Theta is "equal to"

Big-Theta

```
f(n) is \Theta(g(n)) if f(n) is O(g(n)) and f(n) is \Omega(g(n)).
```

Viewing O as a class

Sometimes you'll see big-O defined as a family or set of functions.

Big-O (alternative definition)

O(g(n)) is the set of all functions f(n) such that there exist positive constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

For that reason, some people write $f(n) \in O(g(n))$ where we wrote "f(n) is O(g(n))".

Other people write "f(n) = O(g(n))" to mean the same thing. We never write O(5n) instead of O(n) – they're the same thing! It's like writing $\frac{6}{2}$ instead of 3. It just looks weird.

Common Categories

- The most common running times all have fancy names:
- O(1) constant
- $O(\log n)$ logarithmic
- O(n) linear
- $O(n \log n)$ "n log n"
- $O(n^2)$ quadratic
- $O(n^3)$ cubic
- $O(n^c)$ polynomial (where c is a constant)
- $O(c^n)$ exponential (where c is a constant)

What's the base of the log?

- If I write $\log n$, without specifying a base, I mean $\log_2 n$.
- But does it matter for big-O?
- Suppose we found an algorithm with running time $\log_5 n$ instead.
- Is that different from $O(\log_2 n)$?
- No!
- $\log_c n = \frac{\log_2 n}{\log_2 c}$ If c is a constant, then $\log_2 c$ is just a constant, and we can hide it inside the O().

Review: Properties of logarithms

- log(A*B) = log A + log B- $So log(N^k) = k log N$
- log(A/B) = log A log B
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as 2^{2y} grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written log^2x
 - It is greater than log x for all x > 2

O, Ω, Θ vs. Best, Worst, Average

- It's a common misconception that $\Omega()$ is "best-case" and O() is "worst-case". This is a misconception!!
- O() says "the complexity of this algorithm is at most" (think ≤)
- $\Omega()$ says "the complexity of this algorithm is at least" (think \geq)
- You can use ≤ on worst-case or best case; you can use ≥ on worst-case or best-case.
- Best/Worst/Average say "what function f am I analyzing?"
- O, Ω, Θ say "let me summarize what I know about f, it's $\leq , \geq , = ...$ "