
CSE 332: Data Structures & Parallelism

Lecture 1: Intro, Stacks & Queues

Ruth Anderson
Autumn 2025

Welcome!

We have 10 weeks to learn fundamental data
structures and algorithms for organizing and
processing information
– “Classic” data structures / algorithms and

how to analyze rigorously their efficiency
and when to use them

– Queues, dictionaries, graphs, sorting, etc.
– Parallelism and concurrency (!)

9/24/2025 2

Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

9/24/2025 3

CSE 332 Course Staff!!

Instructor:
Ruth Anderson

Teaching Assistants:
• Aaron Honjaya
• Albert Du
• Andrew Leffingwell
• Cindy Ni
• Connor Olson
• Hana Smahi
• Jacklyn Cui

• Kabir Rajkotia
• Lunjia Dai
• Rubee Zhao
• Samarth Venkatesh
• Tony Wu
• Vicky Ye

9/24/2025 4

Me (Ruth Anderson)

• Grad Student at UW in Programming Languages,
Compilers, Parallel Computing

• Taught Computer Science at the University of Virginia for
5 years

• Grad Student at UW: PhD in Educational Technology,
Pen Computing

• Recent Research: Computing and the Developing World,
Computer Science Education

• Recently Taught: CSE 332, CSE 351, CSE 391, CSE 160

9/24/2025 5

Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

9/24/2025 6

Course Information

• Instructor: Ruth Anderson, CSE 558
– Office Hours: see course web page, and by

appointment, (rea@cs.washington.edu)
• Course Web page:

– http://www.cs.uw.edu/332

9/24/2025 7

Communication

• Ed STEM Discussion board
– You must get and read Announcements sent there

• see the “Announcements” category
– Your first stop for questions about course content &

assignments
• Anonymous feedback link

– For good and bad: if you don’t tell us, we won’t know!

9/24/2025 8

Course Meetings

• Lecture
– Materials posted (sometimes afterwards), but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Section
– Practice problems!
– Occasionally may introduce new material
– An important part of the course (not optional)

• Office hours
– Use them: please visit us!

9/24/2025 9

Course Materials

• Lecture and section materials will be posted
– But they are visual aids, not always a complete description!
– If you have to miss, find out what you missed

• Textbook: (optional)
– Data Structures & Algorithm Analysis in Java, (Mark Allen

Weiss), 3rd edition, 2012 [On reserve at Odegaard Library]
– Good read, but only responsible for lecture/section/hw topics
– 3rd edition improves on 2nd, but 2nd edition is also o.k.

• Parallelism / concurrency units in separate free
resources designed for 332

9/24/2025 10

Course Work

• 13 Weekly-ish individual homework exercises (57%)
– the lowest 1 will be dropped

• Except for EX12, which cannot be dropped
• Midterm and final exam (40%)

– In-person
– Midterm (15%): Wednesday Oct 29, afternoon/evening TBA
– Final Exam (25%): Thursday Dec 11, 12:30-2:20pm KNE 120

• Participation (3%)
– Surveys, Meet the staff, In class activities

9/24/2025 11

Homework for Today!!

1. Preliminary Survey: due Monday 9/29
2. Exercise 0: Due Friday 10/03
3. Review Java & install IntelliJ
4. Reading (optional) in Weiss (see course

web page)

9/24/2025 12

Reading

• Reading in Data Structures and Algorithm Analysis in
Java, 3rd Ed., 2012 by Weiss

• For this week:
– (Topic for Exercise 0) Weiss 3.1-3.7 – Lists,

Stacks, & Queues
– (Fri) Weiss 2.1-2.4 – Algorithm Analysis
– (Useful) Weiss 1.1-1.6 – Mathematics and Java

(Not covered in lecture – READ THIS)

9/24/2025 13

Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

9/24/2025 14

Data Structures + Parallelism

• About 70% of the course is a “classic data-structures
course”
– Timeless, essential stuff
– Core data structures and algorithms that underlie most

software
– How to analyze algorithms

• Plus a serious first treatment of programming with
multiple threads
– For parallelism: Use multiple processors to finish sooner
– For concurrency: Correct access to shared resources

9/24/2025 15

What 332 is about

• Deeply understand the basic structures used in all
software
– Understand the data structures and their trade-offs
– Rigorously analyze the algorithms that use them (math!)
– Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of
multithreading

• Practice design, analysis, and implementation
– The elegant interplay of “theory” and “engineering” at the

core of computer science

9/24/2025 16

Goals

• You will understand:
– what the tools are for storing and processing

common data types
– which tools are appropriate for which need

• So that you will be able to:
– make good design choices as a developer, project

manager, or system customer
– justify and communicate your design decisions

9/24/2025 17

One view on this course

• This is the class where you begin to think like a
computer scientist
– You stop thinking in Java code
– You start thinking that this is a hashtable problem,

a stack problem, etc.

9/24/2025 18

Data Structures?

“Clever” ways to organize information in
order to enable efficient computation
over that information.

9/24/2025 19

Example Trade-Offs

9/24/2025 20

Trade-Offs

A data structure strives to provide many useful, efficient
operations

But there are unavoidable trade-offs:
– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

That is why there are many data structures and
educated CSEers internalize their main trade-offs
and techniques
– And recognize logarithmic < linear < quadratic < exponential

9/24/2025 21

Getting Serious: Terminology

• Abstract Data Type (ADT)
– Mathematical description of a “thing” with set of

operations on that “thing”
• Algorithm

– A high level, language-independent description of
a step-by-step process

• Data structure
– A specific organization of data and family of

algorithms for implementing an ADT
• Implementation of a data structure

– A specific implementation in a specific language
9/24/2025 22

The Stack ADT

• Stack Operations:
push
pop
top/peek
is_empty

9/24/2025 23

A

B
C
D
E
F

E D C B A

F

Terminology Example: Stacks

• The Stack ADT supports operations:
– push: adds an item
– pop: raises an error if isEmpty, else returns most-recently

pushed item not yet returned by a pop
– isEmpty: initially true, later true if there have been same

number of pops as pushes
– … (Often some more operations)

• A Stack data structure could use a linked-list or an
array or something else, and associated algorithms
for the operations

• One implementation is in the library
java.util.Stack

9/24/2025 24

Why useful

The Stack ADT is a useful abstraction because:
• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”
– Rather than, “create a linked list and add a node when…”

• It arises all the time in programming (see Weiss for
more)
– Recursive function calls
– Balancing symbols (parentheses)
– Evaluating postfix notation: 3 4 + 5 *
– Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library

9/24/2025 25

Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

9/24/2025 26

The Queue ADT

Queue Operations:

enqueue
dequeue
is_empty

9/24/2025 27

F E D C Benqueue dequeueG A

Circular Array Queue Data Structure

9/24/2025 28

b c d e f
Q: 0 size - 1

front back

// Basic idea only!
enqueue(x) {
Q[back] = x;
back = (back + 1) % size

}

// Basic idea only!
dequeue() {
x = Q[front];
front = (front + 1) % size;
return x;

}

• What if queue is empty?
– Enqueue?
– Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of

the operations?

Linked List Queue Data Structure

9/24/2025 29

b c d e f

front back

// Basic idea only!
enqueue(x) {
back.next = new Node(x);
back = back.next;

}

// Basic idea only!
dequeue() {
x = front.item;
front = front.next;
return x;

}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of

the operations?

Circular Array vs. Linked List

9/24/2025 30

Circular Array vs. Linked List (Answers)

9/24/2025 31

Array:
– May waste unneeded space or

run out of space
– Space per element excellent
– Operations very simple / fast

Operations not in Queue ADT, but
also:
– Constant-time “access to kth

element”
– For operation “insertAtPosition”,

must shift all later elements

List:
– Always just enough space
– But more space per element
– Operations very simple / fast

Operations not in Queue ADT, but
also:
– No constant-time “access to kth

element”
– For operation “insertAtPosition”

must traverse all earlier elements

Homework for Today!!

1. Preliminary Survey: due Monday 9/29
2. Exercise 0: Due Friday 10/03
3. Review Java & install IntelliJ
4. Reading (optional) in Weiss (see course

web page)

9/24/2025 32

	CSE 332: Data Structures & Parallelism��Lecture 1: Intro, Stacks & Queues
	Welcome!
	Today
	CSE 332 Course Staff!!
	Me (Ruth Anderson)
	Today
	Course Information
	Communication
	Course Meetings
	Course Materials
	Course Work
	Homework for Today!!
	Reading
	Today
	Data Structures + Parallelism
	What 332 is about
	Goals
	One view on this course
	Data Structures?
	Example Trade-Offs
	Trade-Offs
	Getting Serious: Terminology
	The Stack ADT
	Terminology Example: Stacks
	Why useful
	Today
	The Queue ADT
	Circular Array Queue Data Structure
	Linked List Queue Data Structure
	Circular Array vs. Linked List
	Circular Array vs. Linked List (Answers)
	Homework for Today!!

