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Welcome!

We have 10 weeks to learn fundamental data 
structures and algorithms for organizing and 
processing information
– “Classic” data structures / algorithms and 

how to analyze rigorously their efficiency 
and when to use them

– Queues, dictionaries, graphs, sorting, etc.
– Parallelism and concurrency (!)
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Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks
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CSE 332 Course Staff!!

Instructor:
Ruth Anderson

Teaching Assistants:
• Aaron Honjaya
• Albert Du
• Andrew Leffingwell
• Cindy Ni
• Connor Olson
• Hana Smahi
• Jacklyn Cui

• Kabir Rajkotia
• Lunjia Dai
• Rubee Zhao
• Samarth Venkatesh
• Tony Wu
• Vicky Ye

9/24/2025 4



Me (Ruth Anderson)

• Grad Student at UW in Programming Languages, 
Compilers, Parallel Computing

• Taught Computer Science at the University of Virginia for 
5 years

• Grad Student at UW: PhD in Educational Technology, 
Pen Computing

• Recent Research: Computing and the Developing World, 
Computer Science Education

• Recently Taught: CSE 332, CSE 351, CSE 391, CSE 160
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Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks
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Course Information

• Instructor: Ruth Anderson, CSE 558
– Office Hours: see course web page, and by 

appointment, (rea@cs.washington.edu)
• Course Web page:

– http://www.cs.uw.edu/332

9/24/2025 7



Communication

• Ed STEM Discussion board
– You must get and read Announcements sent there

• see the “Announcements” category
– Your first stop for questions about course content & 

assignments
• Anonymous feedback link

– For good and bad: if you don’t tell us, we won’t know!
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Course Meetings

• Lecture
– Materials posted (sometimes afterwards), but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Section
– Practice problems!
– Occasionally may introduce new material
– An important part of the course (not optional)

• Office hours 
– Use them: please visit us!
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Course Materials

• Lecture and section materials will be posted
– But they are visual aids, not always a complete description!
– If you have to miss, find out what you missed

• Textbook: (optional)
– Data Structures & Algorithm Analysis in Java, (Mark Allen 

Weiss), 3rd edition, 2012 [On reserve at Odegaard Library]
– Good read, but only responsible for lecture/section/hw topics
– 3rd edition improves on 2nd, but 2nd edition is also o.k.

• Parallelism / concurrency units in separate free 
resources designed for 332
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Course Work

• 13 Weekly-ish individual homework exercises (57%)
– the lowest 1 will be dropped

• Except for EX12, which cannot be dropped
• Midterm and final exam (40%)

– In-person
– Midterm (15%): Wednesday Oct 29, afternoon/evening TBA
– Final Exam (25%): Thursday Dec 11, 12:30-2:20pm KNE 120

• Participation (3%)
– Surveys, Meet the staff, In class activities
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Homework for Today!!

1. Preliminary Survey: due Monday 9/29
2. Exercise 0: Due Friday 10/03
3. Review Java & install IntelliJ
4. Reading (optional) in Weiss (see course 

web page)
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Reading

• Reading in Data Structures and Algorithm Analysis in 
Java, 3rd Ed., 2012 by Weiss

• For this week:
– (Topic for Exercise 0) Weiss 3.1-3.7 – Lists, 

Stacks, & Queues
– (Fri) Weiss 2.1-2.4 – Algorithm Analysis 
– (Useful) Weiss 1.1-1.6 – Mathematics and Java 

(Not covered in lecture – READ THIS)
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Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks
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Data Structures + Parallelism

• About 70% of the course is a “classic data-structures 
course”
– Timeless, essential stuff
– Core data structures and algorithms that underlie most 

software
– How to analyze algorithms

• Plus a serious first treatment of programming with 
multiple threads
– For parallelism:  Use multiple processors to finish sooner
– For concurrency:  Correct access to shared resources
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What 332 is about

• Deeply understand the basic structures used in all 
software
– Understand the data structures and their trade-offs
– Rigorously analyze the algorithms that use them (math!)
– Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of 
multithreading

• Practice design, analysis, and implementation
– The elegant interplay of “theory” and “engineering” at the 

core of computer science
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Goals

• You will understand:
– what the tools are for storing and processing 

common data types
– which tools are appropriate for which need

• So that you will be able to:
– make good design choices as a developer, project 

manager, or system customer
– justify and communicate your design decisions
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One view on this course

• This is the class where you begin to think like a 
computer scientist
– You stop thinking in Java code
– You start thinking that this is a hashtable problem, 

a stack problem, etc.
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Data Structures?

“Clever” ways to organize information in 
order to enable efficient computation 
over that information.
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Example Trade-Offs
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Trade-Offs

A data structure strives to provide many useful, efficient 
operations

But there are unavoidable trade-offs:
– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

That is why there are many data structures and 
educated CSEers internalize their main trade-offs 
and techniques
– And recognize logarithmic < linear < quadratic < exponential
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Getting Serious: Terminology

• Abstract Data Type (ADT)
– Mathematical description of a “thing” with set of 

operations on that “thing”
• Algorithm

– A high level, language-independent description of 
a step-by-step process

• Data structure
– A specific organization of data and family of 

algorithms for implementing an ADT
• Implementation of a data structure

– A specific implementation in a specific language
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The Stack ADT

• Stack Operations:
push
pop
top/peek
is_empty
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Terminology Example: Stacks

• The Stack ADT supports operations:
– push: adds an item
– pop: raises an error if isEmpty, else returns most-recently 

pushed item not yet returned by a pop
– isEmpty: initially true, later true if there have been same 

number of pops as pushes
– … (Often some more operations)

• A Stack data structure could use a linked-list or an 
array or something else, and associated algorithms
for the operations

• One implementation is in the library 
java.util.Stack
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Why useful

The Stack ADT is a useful abstraction because:
• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”
– Rather than, “create a linked list and add a node when…”

• It arises all the time in programming (see Weiss for 
more)
– Recursive function calls
– Balancing symbols (parentheses)
– Evaluating postfix notation: 3 4 + 5 * 
– Clever: Infix ((3+4) * 5) to postfix conversion (see Weiss)

• We can code up a reusable library
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Today

• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks
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The Queue ADT

Queue Operations:

enqueue
dequeue
is_empty
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Circular Array Queue Data Structure
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b c d e f
Q: 0 size - 1

front back

// Basic idea only!
enqueue(x) {
Q[back] = x;
back = (back + 1) % size 

}

// Basic idea only!
dequeue() {
x = Q[front];
front = (front + 1) % size;
return x;

}

• What if queue is empty?
– Enqueue?
– Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of 

the operations?



Linked List Queue Data Structure
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b c d e f

front back

// Basic idea only!
enqueue(x) {
back.next = new Node(x);
back = back.next; 

}

// Basic idea only!
dequeue() {
x = front.item;
front = front.next;
return x;

}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of 

the operations?



Circular Array vs. Linked List

9/24/2025 30



Circular Array vs. Linked List (Answers)
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Array:
– May waste unneeded space or 

run out of space
– Space per element excellent
– Operations very simple / fast

Operations not in Queue ADT, but 
also:
– Constant-time “access to kth

element”
– For operation “insertAtPosition”, 

must shift all later elements

List:
– Always just enough space
– But more space per element
– Operations very simple / fast

Operations not in Queue ADT, but 
also:
– No constant-time “access to kth

element”
– For operation “insertAtPosition” 

must traverse all earlier elements



Homework for Today!!

1. Preliminary Survey: due Monday 9/29
2. Exercise 0: Due Friday 10/03
3. Review Java & install IntelliJ
4. Reading (optional) in Weiss (see course 

web page)
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