CSE 332 Autumn 2025 Midterm
Version A

Name:

Email address (UWNetID):

Instructions:

Advice

Question #/Topic/Points
Short-answer questions (20 pts)
(continued)

Code Analysis (16 pts)

0, Q, and O (9 pts)

Write a Recurrence (5 pts)

Tree Method (8 pts)

AVL (9 pts)

Heaps (7 pts)

Q1:
Q1:
Q2:
Q3:
Q4:
Q5:
Q6:
Q7:

The allotted time is 60 minutes.

Please do not turn the page until the staff says to do so.

This is a closed-book and closed-notes exam. You are NOT permitted to access electronic
devices including calculators.

Read the directions carefully, especially for problems that require you to show work or provide an
explanation.

When provided, write your answers in the box or on the line provided.

Unless otherwise noted, every time we ask for an O, Q, or © bound, it must be simplified and
tight.

Unless otherwise noted, assume all data structures are implemented as described in lecture.

For answers that involve bubbling in a 'Q or I:I make sure to fill in the shape completely.

If you run out of room on a page, indicate where the answer continues. Try to avoid writing on the
very edges of the pages: we scan your exams and edges often get cropped off.

A formula sheet has been included at the end of the exam.

If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you
have time.

Look at the question titles on the cover page to see if you want to start somewhere other than
problem 1.

Relax and take a few deep breaths. You’ve got this! :-).

U
Q)
D
N O o N A WNDN K

-_—

Total: 74 points

2
Q1: Short-answer questions (20 pts)

Unless otherwise noted, assume all data structures are implemented as described in lecture.
For questions asking you about runtime, give a simplified, tight Big-O bound. This means that, for
example, O(5n? + 7n+ 3) (not simplified) or O(2") (not tight enough) are unlikely to get points.
Unless otherwise specified, all logs are base 2.
e For questions with a mathematical answer, you may leave you answer as an unsimplified formula
(e.g. 7-10%.
We will only grade what is in the provided answer box.

a. Floyd’s Build Heap method moves from:

~

(Select one) _/low indices to high indices or ':::'high indices to low indices of the array

and calls:

() ()

(Select one) “_“percolateUp or '_/percolateDown.

b. Give a simplified, tight big-O bound for

f(N) - N0.0001 + |0910(N10) + 3

O()

c. Give the worst case runtime for inserting 2N elements into an initially empty AVL tree. (Give

your answer in terms of N.):

d. Assuming only integers = 1 may be inserted, what is the smallest possible integer in the 3rd
level (the root node is level 0) of a binary min heap?

e. Give the best case runtime for inserting a (key, value) pair into an AVL tree used as a
dictionary, containing N (key, value) pairs. (Give your answer in terms of N.)

O()

Q1: (continued)

(Same instructions as on previous page)

f. Give a simplified, tight big-O bound for

f(N) = (3" + N2)?

O()

g. Give the worst case runtime of removing the l0g N largest elements from a binary max
heap containing N elements. (Give your answer in terms of N.)

h. Give the worst-case runtime of removing the second smallest element from a binary search
tree containing N elements. (Give your answer in terms of N.)

i. Give a simplified, tight big-O bound for

f(N) = log*(N) + log(log (N*))

O()

j- Give the minimum number of leaf nodes in a binary min heap of height 4. (Remember: A
single node is a tree of height 0.) Give an exact number, not a formula.

4
Q2: Code Analysis (16 pts)

Describe the worst-case running time for the following pseudocode functions in Big-O notation in terms of the
variable n. Your answer MUST be tight and simplified. You do not have to show work or justify your
answers for this problem.

a)
public static void flipACoin(int n) {
int coinSide = ©; // even is heads, odd is tails
for (int i = 1; i < n; i *= 2) {
int j = i;
while (j < n) {
coinSide += 1;
J += 1;

}

if (coinSide % 2 == 0) {
System.out.println(“Heads!”);

} else {
System.out.println(“Tails!”);

Of)

b)
public static int mystery(int n, int k) {
if (n < 100) {
for (int i =0; i < n *n * n; i++) {
k++;
}
return k;
} else if (n < 5000) {
return n * n;
}
k += mystery(n / 2, k);
return k * mystery(n / 2, k);

O()

Q2: (continued)

c) public static int calculateNetWorth(int n) {

if (n < 10000) {

return n + getStockBonus(n);
¥
int wealth 0;
for (int i = 1; i < n; i *= 3) {

if (i % 27 == 0) {

wealth += sellStocks(n);

}

return wealth;
}

public static int getStockBonus(int shares) {
int profit = 0;
for (int stockNum = ©; stockNum <= shares; stockNum ++) {
profit = profit + stockNum * 332;
}

return profit;
}
public static int sellStocks(int shares) {
int total = 0;
for (int stockNum = 1; stockNum <= shares; stockNum *= 3) {
total = total + stockNum * 332;

}

return total;

For calculateNetWorth:

O()

d) public static BinarySearchTree treeMystery(int n) {
BinarySearchTree bst = new BinarySearchTree();
bst.insert(9);
for(int i = 1; i < n; i++){

bst.insert(i);
bst.insert(-1i);

}

return bst;

Of)

6
Q3: O, Q, and © (9 pts)

For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do
not need to include an explanation. Assume that the domain and codomain of all functions in this problem are
natural numbers(1, 2, 3 ...).

a) A function thatis O(n log n) is O(log n)

O Always O Never O Sometimes
b) A function thatis Q(1) is O(n)

O Always / Never O Sometimes
c) A function that is ©(n?) is Q(n3).

O Always O Never O Sometimes
d) A function that is Q(n?) is O(n?)

O Always O Never O Sometimes
e) A function that is O(n) is O(n?).

r::_‘. Always r::_‘. Never r::} Sometimes
f) A function that is ©(2") is Q(n'924)

'C:' Always 'C:' Never 'C:' Sometimes
g) A function that is O(log(n")) is o(n?).

O Always O Never O Sometimes
h) If f(n) is O(g(n)) and g(n) is Q(h(n)), then f(n) is O(h(n)).

O Always O Never O Sometimes
i) If f(n) is both ©(g(n)) and Q(h(n)), then g(n) is Q(h(n)).

()

“/ Always

O Never

O Sometimes

Q4: Write a Recurrence (5 pts)

Give a base case and a recurrence for the worst-case runtime of the following function. Use
variables appropriately for values that are constants (e.g. c,, c,, etc.) in your recurrence; you do
not need to attempt to count the exact number of operations, but you should include lower-order
terms. YOU DO NOT NEED TO SOLVE this recurrence.

public static int fun(int n) {
if (n > 9) {
int sum = fun(n - 4);

for (int 1 = 0; i < n * n; i++) {

sum += i;
}
return fun(n/5);
} else {

for (int j = @; j < n; j++) {
System.out.println(j);

}
return n;
}
}
T(n) = Forn<9
T(n)= Forn > 9

Yipee!!ll youpo NOT NEED T0 SOLVE [HIS recurrence...

8
Q5: Tree Method (8 pts)

Suppose that the running time of an algorithm is expressed by the recurrence relation:

T(1) =1
T(N) = 3T(4) + N forintegers N > 1

For the following questions, use the tree method to solve the recurrence relation. We have
broken up the process into subquestions to guide you through your answer. You may assume
that N is always a power of 4. Be sure to include bases in logs in your answers if any.

a) Sketch the tree in the space below. Include at least the first 3 levels of the tree (i.e.
the root, its children, and its grandchildren), make clear what the input size is for
each recursive call as well as the work per call.

b) Indicate exactly the total amount of work done at level i of the tree (define the root to
be level 0). Include all constants and non-dominant terms.

c) Indicate the level of the tree in which the base cases occur.

d) Give a simplified © bound on the solution. When simplified, n should not appear in
any exponents.

O)

10

Q6: AVL (9 pts)

You are given the following AVL Tree used as a dictionary, containing (key, value) pairs (only the keys
are shown). Answer the questions on the next page.

-,
I/ 7 \\'II
.H"#--\&-_/Hﬁx""--\.

11
Q6 (continued)

a) (2 pts) Give a single integer key that if inserted would cause a double rotation. Write N/A if not
possible.

b) (2 pts) Give a single integer key that if inserted would cause a single rotation. Write N/A if not
possible.

c) (2 pts) Give a single new integer key (not already present) that if inserted would cause no
rotations. Write N/A if not possible.

d) (3 pts) What is the minimum number of integer keys we need to insert to increase the height of the
tree to be 2 more than its current height?

12
Q7: Heaps (7 pts)

a) (3 pts) For each binary min heap, select if it is valid or invalid.

i) _/Valid / '::'Invalid i)y \AValid / ‘_/Invalid i) 'C}Valid [_/Invalid

() ()

~

b) This is an array representation of a 0-indexed binary max heap:

23 16 20 5 4 18 1

i) (2 pts) Insert 19 into the original heap. Fill in the array representation of the resulting heap below.
You are welcome to draw the heap structure, but we will only grade what is written in the array.

ii) (2 pts) Perform a deleteMax on the original heap. Fill in the array representation of the resulting
heap below. You may draw the heap structure, but we will only grade what is written in the array.

Summations
1. Y x'=——forlx|< 1
i=0
2. Ycf(D=cX f(D
i=1 i=1
n-=1 n
3 1=¥¥1=n
i=0 i=1
4. Yi=0+yi="02
i=0 i=1
" 3 [naln+1) 2_ n’ n’
6 21 = (5] = Tt
n-1 .
7. ;0 x = 11_—2
n-=1
3 1L _ 5 _ 1
[:D 2! 2?1—1
Logs:
1. alogb(c) — Clogb(a) 5. blogb(”) =n
logy(a)
2. log,(a) = logi(b) 6. log,(n - m) = log,(n) + log,(m)
n
3. log,(b) =1 1. logb(E) = logy(n) — log,(m)
4. log,(1) =0 8. log, (n*) = k - logy (n)

13

14

This is a blank page! Enjoy!

	CSE 332 Autumn 2025 Midterm
	Q1: Short-answer questions (20 pts)
	
	Q1: (continued)
	Q2: Code Analysis (16 pts)
	Q3: O, Ω, and Θ (9 pts)
	
	Q4: Write a Recurrence (5 pts)
	Q5: Tree Method (8 pts)
	Q6: AVL (9 pts)
	Q7: Heaps (7 pts)

