Dictionary (Map) ADT

• Contents:
 • Sets of key+value pairs
 • Keys must be comparable

• Operations:
 • insert(key, value)
 • Adds the (key,value) pair into the dictionary
 • If the key already has a value, overwrite the old value
 • Consequence: Keys cannot be repeated
 • find(key)
 • Returns the value associated with the given key
 • delete(key)
 • Remove the key (and its associated value)
Less Naïve attempts

• Binary Search Trees (Friday)
• Tries (Project)
• AVL Trees (Today)
• B-Trees (this week)
• HashTables (next week)
• Red-Black Trees (not included in this course)
• Splay Trees (not included in this course)
Dictionary Data Structures

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time to insert</th>
<th>Time to find</th>
<th>Time to delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Unsorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted Linked List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Binary Search Tree</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Binary Search Tree

- **Binary Tree**
 - Definition:
 - Every node has at most 2 children

- **Order Property**
 - All keys in the left subtree are smaller than the root
 - All keys in the right subtree are larger than the root
 - Apply recursively

- **Why?**
 - Makes searching quicker
 - Worst case: tree’s height
Find Operation (recursive)

find(key, root)
 if (root == Null)
 return Null;
 if (key == root.key)
 return root.value;
 if (key < root.key)
 return find(key, root.left);
 if (key > root.key)
 return find(key, root.right);
 return Null;
Find Operation (iterative)

find(key, root) {
 while (root != Null && key != root.key) {
 if (key < root.key) {
 root = root.left;
 } else if (key > root.key) {
 root = root.right;
 }
 }
 if (root == Null) {
 return Null;
 }
 return root.value;
}
Insert Operation (iterative)

```java
insert(key, value, root){
    if (root == Null){ this.root = new Node(key, value); }
    parent = Null;
    while (root != Null && key != root.key){
        parent = root;
        if (key < root.key){ root = root.left; }
        else if (key > root.key){ root = root.right; }
    }
    if (root != Null){ root.value = value; }
    else if (key < parent.key){ parent.left = new Node(key, value); }
    else{ parent.right = new Node (key, value); }
}
```

Note: Insert happens only at the leaves!
Delete Operation (iterative)

```plaintext
delete(key, root){
    while (root != Null && key != root.key){
        if (key < root.key){ root = root.left; }
        else if (key > root.key){ root = root.right; }
    }
    if (root == Null){ return; }
    // Now root is the node to delete, what happens next?
}
```
Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)
 - Point to null

• 1 Child
 - Replace node with the max on L or min on R
Finding the Max and Min

• Max of a BST:
 • Right-most Thing

• Min of a BST:
 • Left-most Thing

maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
 root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
 root = root.left;
 }
 return root;
}
Delete Operation (iterative)

def delete(key, root):
 while (root != Null && key != root.key):
 if (key < root.key){ root = root.left; }
 else if (key > root.key){ root = root.right; }

 if (root == Null){ return; }
 if (root has no children){
 make parent point to Null instead;
 }
 if (root has one child){
 make parent point to that child instead;
 }
 if (root has two children){
 make parent point to either the max from the left or min from the right
 }
Improving the worst case

• How can we get a better worst case running time?
“Balanced” Binary Search Trees

• We get better running times by having “shorter” trees
• Trees get tall due to them being “sparse” (many one-child nodes)
• Idea: modify how we insert/delete to keep the tree more “full”
Idea 1: Both Subtrees of Root have same # Nodes
Idea 2: Both Subtrees of Root have same height
Idea 3: Both Subtrees of every Node have same # Nodes
Idea 4: Both Subtrees of every Node have same height
AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of every node have heights that differ by at most one.
 • height of left subtree and height of right subtree off by at most 1
 • Not too weak (ensures trees are short)
 • Not too strong (works for any number of nodes)

• Idea of AVL Tree:
 • When you insert/delete nodes, if tree is “out of balance” then modify the tree
 • Modification = “rotation”
Is it an AVL Tree?

A: No
B: Yes
Using AVL Trees

• Each node has:
 • Key
 • Value
 • Height
 • Left child
 • Right child
Inserting into an AVL Tree

• Starts out the same way as BST:
 • “Find” where the new node should go
 • Put it in the right place (it will be a leaf)

• Next check the balance
 • If the tree is still balanced, you’re done!
 • Otherwise we need to do rotations
Insert Example

```
10
  9
  3
  1
  2
  0
  6
  11
  7
  16
```
Insert Example

-1

3

9

11

16

1

2

6

7

0

Rotation
Not Balanced!

Solution: rotate the whole tree to the right

Height = 3
Height = 1
Balanced!
Right Rotation

- Make the left child the new root
- Make the old root the right child of the new
- Make the new root’s right subtree the old root’s left subtree
Insert Example

20

Diagram of a tree with nodes labeled 0 to 20.
Not Balanced!

Solution: rotate the deepest imbalance to the left
Balanced!
Left Rotation

- Make the right child the new root
- Make the old root the left child of the new
- Make the new root’s left subtree the old root’s right subtree
Insertion Story So Far

• After insertion, update the heights of the node’s ancestors
• Check for imbalance
• If there’s imbalance then at the deepest root of imbalance:
 • If the left subtree was deeper then rotate right
 • If the right subtree was deeper then rotate left

This is incomplete! There are some cases where this doesn’t work!
Insertion Story So Far

- After insertion, update the heights of the node’s ancestors
- Check for imbalance
- If there’s imbalance then at the deepest root of imbalance:
 - Case LL: If we inserted in the left subtree of the left child then rotate right
 - Case RR: If we inserted in the right subtree of the right child then rotate left
 - Case LR: If we inserted into the right subtree of the left child then ???
 - Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 rotations!
Case LR

- From “root” of the deepest imbalance:
 - Rotate left at the left child
 - Rotate right at the root
Case LR in General

- Imbalance caused by inserting in the left child’s right subtree
- Rotate left at the left child
- Rotate right at the imbalanced node
Case RL in General

- Imbalance caused by inserting in the right child’s left subtree
- Rotate right at the right child
- Rotate left at the imbalanced node
Insert Summary

• After a BST insertion, update the heights of the node’s ancestors
• Check for imbalance

• If there’s imbalance then at the deepest root of imbalance:
 • Case LL: If we inserted in the left subtree of the left child then: rotate right
 • Case RR: If we inserted in the right subtree of the right child then: rotate left
 • Case LR: If we inserted into the right subtree of the left child then: rotate left at the left child and then rotate right at the root
 • Case RL: If we inserted into the left subtree of the right child then: rotate right at the right child and then rotate left at the root